A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Minimally invasive, multi-port approach to the lateral skull base: a first in vitro evaluation. | LitMetric

Purpose: The aim of the study was to validate a minimally invasive, multi-port approach to the internal auditory canal at the lateral skull base on a cadaver specimen.

Methods: Fiducials and a custom baseplate were fixed on a cadaver skull, and a computed tomography image was acquired. Three trajectories from the mastoid surface to the internal auditory canal were computed with a custom planning tool. A self-developed positioning system with a drill guide was attached to the baseplate. After referencing on a high precision coordinate measuring machine, the drill guide was aligned according to the planned trajectories. Drilling of three trajectories was performed with a medical stainless steel drill bit.

Results: The process of planning and drilling three trajectories to the internal auditory canal with the presented workflow and tools was successful. The mean drilling error of the system (Euclidian distance between the planned trajectory and centerline of the actual drilled canal) was [Formula: see text] mm at the entry point and [Formula: see text] mm at the target. The inaccuracy of the drill process itself and its physical limitations were identified as the main contributing factors.

Conclusion: The presented system allows the planning and drilling of multiple minimally invasive canals at the lateral skull base. Further studies are required to reduce the drilling error and evaluate the clinical application of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-017-1533-5DOI Listing

Publication Analysis

Top Keywords

minimally invasive
12
lateral skull
12
skull base
12
internal auditory
12
auditory canal
12
three trajectories
12
invasive multi-port
8
multi-port approach
8
drill guide
8
drilling three
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!