Endo-β1,4-glucanases in glycosyl hydrolase family 5 (GH5) are ubiquitous enzymes in the multicellular fungi and are common components of enzyme cocktails for biomass conversion. We recently showed that an endo-glucanase of subfamily 5 of GH5 (GH5_5) from Sporotrichum thermophile (StCel5A) was more effective at releasing glucose from pretreated corn stover, when part of an eight-component synthetic enzyme mixture, compared to its closely related counterpart from Trichoderma reesei, TrCel5A. StCel5A and TrCel5A belong to different clades of GH5_5 (GH5_5_1 and GH5_5_2, respectively). To test whether the superior activity of StCel5A was a general property of all enzymes in the GH5_5_2 clade, StCel5A, TrCel5A, and two additional members of each subfamily were expressed in a common host that had been engineered to suppress its native cellulases (T. reesei Δxyr1) and compared against each other alone on pure substrates, in synthetic mixtures on pure substrates, and against each other in synthetic mixtures on real biomass. The results indicated that superiority is a unique property of StCel5A and not of GH5_5_2 generally. The six Cel5A enzymes had significant differences in relative activities on different substrates, in specific activities, and in sensitivities to mannan inhibition. Importantly, the behavior of the six endo-glucanases on pure cellulose substrates did not predict their behavior in combination with other cellulolytic enzymes on a real lignocellulosic biomass substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-017-8168-x | DOI Listing |
Appl Microbiol Biotechnol
May 2017
Department of Energy Plant Research Laboratory, Department of Plant Biology, and DOE Great Lakes Bioenergy Research Center, Michigan State University, E. Lansing, MI, 48824, USA.
PLoS One
October 2015
Department of Energy Great Lakes Bioenergy Research Center and Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America.
Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2012
Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada.
The hydrolysis of cellulose into fermentable sugars is a costly and rate-limiting step in the production of biofuels from renewable feedstocks. Developing new cellulase systems capable of increased cellulose hydrolysis rates would reduce biofuel production costs. With this in mind, we screened 55 fungal endoglucanases for their abilities to be expressed at high levels by Aspergillus niger and to hydrolyze amorphous cellulose at rates significantly greater than that obtained with TrCel5A, one of the major endoglucanases in the Trichoderma reesei cellulase system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!