Background: Left ventricular (LV) dyssynchrony frequently occurs in patients with heart failure (HF). QRS ≥ 120 ms is a surrogate marker of electrical dyssynchrony, which occurs in only 30% of HF patients. In contrary, in those with normal QRS (nQRS) duration, LV dyssynchrony has been reported in 20-50%. This study was carried out to investigate the role of fragmented QRS (fQRS) on the surface electrocardiography (ECG) as a marker of electrical dyssynchrony to predict the presence of significant intraventricular dyssynchrony (IVD) by subsequent echocardiographic assessment.

Methods: A total of 226 consecutive patients with non-ischemic cardiomyopathy were assessed for fQRS on surface ECG as defined by presence of an additional R wave (R prime), notching in nadir of the S wave, notching of R wave, or the presence of more than one R prime (fragmentation) in two contiguous leads corresponding to a major myocardial segment. Tissue Doppler imaging (TDI) was performed in the apical views (four-chamber, two-chamber and long-axis) to analyze all 12 segments at both basal and middle levels. Time-to-peak myocardial sustained systolic (Ts) velocities were calculated. Significant systolic IVD was defined as Ts-SD > 32.6 ms as known as "Yu index".

Result: Of the total patients, 112 had fQRS (49.5%), while 114 had nQRS (50.5%) with male dominance (M/F = 71:29). Majority of patients were in NYHA class II (n = 122, 54%) followed by class III (n = 83; 37%), and class IV (n = 21; 9%). There were no significant differences among both groups for baseline parameters except higher QRS duration (102.42 ± 14.05 vs. 91.10 ± 13.75 ms; P = 0.001), higher Yu index (35.64 ± 12.79 vs. 20.45 ± 11.17; P = 0.01) and number of patients with positive Yu index (78.6% vs. 21.1%; P = 0.04) in group with fQRS compared with group with nQRS. fQRS complexes had 84.61% sensitivity and 80.32% specificity with positive predictive value of 78.6% and negative predictive value of 85.9% to detect IVD. On detailed segmental analysis for fQRS distribution, inferior segment had maximum (37%), followed by anterior (23%), lateral (19%), inferior and lateral (11%), anterior and inferior (8%), and anterior and lateral (2%). Among 104 patients with significant dyssynchrony, 88 patients (84.6%) had fQRS in the dyssynchronic segment.

Conclusion: Fragmentation of QRS complex is an important predictor of electro-mechanical dyssynchrony. It is also helpful in localizing the dyssynchronous segment. In future, larger studies may be carried out to investigate the role of fQRS as a predictor of response to cardiac resynchronization therapy (CRT) in this subgroup of HF patients with narrow QRS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295578PMC
http://dx.doi.org/10.14740/cr495wDOI Listing

Publication Analysis

Top Keywords

marker electrical
12
electrical dyssynchrony
12
patients
10
fragmented qrs
8
dyssynchrony
8
dyssynchrony predict
8
subsequent echocardiographic
8
patients non-ischemic
8
carried investigate
8
investigate role
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!