Theoretical and experimental studies have firmly established that protein folding can be described by a funneled energy landscape. This funneled energy landscape is the result of foldable protein sequences evolving following the principle of minimal frustration, which allows proteins to rapidly fold to their native biologically functional conformations. For a protein family with a given functional fold, the principle of minimal frustration suggests that, independent of sequence, all proteins within this family should fold with similar rates. However, depending on the optimal living temperature of the organism, proteins also need to modulate their thermodynamic stability. Consequently, the difference in thermodynamic stability should be primarily caused by differences in the unfolding rates. To test this hypothesis experimentally, we performed comprehensive thermodynamic and kinetic analyses of 15 different proteins from the thioredoxin family. Eight of these thioredoxins were extant proteins from psychrophilic, mesophilic, or thermophilic organisms. The other seven protein sequences were obtained using ancestral sequence reconstruction and can be dated back over 4 billion years. We found that all studied proteins fold with very similar rates but unfold with rates that differ up to three orders of magnitude. The unfolding rates correlate well with the thermodynamic stability of the proteins. Moreover, proteins that unfold slower are more resistant to proteolysis. These results provide direct experimental support to the principle of minimal frustration hypothesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338549PMC
http://dx.doi.org/10.1073/pnas.1613892114DOI Listing

Publication Analysis

Top Keywords

principle minimal
16
minimal frustration
16
thermodynamic stability
12
protein folding
8
funneled energy
8
energy landscape
8
protein sequences
8
proteins
8
fold rates
8
unfolding rates
8

Similar Publications

Entropy-based methods for formulating bottom-up ultra-coarse-grained models.

J Chem Phys

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.

Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.

View Article and Find Full Text PDF

Veterinary intervention in zoological species can be complicated by species-specific social dynamics. African wild dogs are a pack species and removal or separation of an individual may disrupt established pack hierarchy resulting in conspecific aggression. Therefore, medical interventions that optimize a quick return to health are ideal to minimize the duration of absence from the pack.

View Article and Find Full Text PDF

Introduction: Transcranial magnetic stimulation (TMS) is widely used for the noninvasive activation of neurons in the human brain. It utilizes a pulsed magnetic field to induce electric pulses that act on the central nervous system, altering the membrane potential of nerve cells in the cerebral cortex to treat certain mental diseases. However, the effectiveness of TMS can be compromised by significant heat generation and the clicking noise produced by the pulse in the TMS coil.

View Article and Find Full Text PDF

Background: Worn dentition is a common problem encountered by most people in the last decade. Rehabilitation of a full mouth needs individual attention and proper treatment planning, which is very challenging for partial edentulous cases where bilateral teeth are missing and collapsed vertical dimension leaves inadequate restorative space. Treatment of these cases is complex and needs to apply standard principles while designing and fabricating prostheses.

View Article and Find Full Text PDF

Introduction: Implementation of enhanced recovery after surgery principles has led to exploration of ambulatory pathways in surgery, including gastrointestinal surgery. However, implementation of ambulatory pathways after colorectal surgery has not been established yet. Previous studies suggest that discharge within 24 h in colorectal surgery is only possible with a clear protocol and careful patient selection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!