Background: Porous metaphyseal cones are widely used in revision knee arthroplasty. A new system of porous titanium metaphyseal cones has been designed based on the femoral and tibial morphology derived from a computed tomography-based anatomical database. The purpose of this study is to evaluate the initial mechanical stability of the new porous titanium revision cone system by measuring the micromotion under physiologic loading compared with a widely-used existing porous tantalum metaphyseal cone system.

Methods: The new cones were designed to precisely fit the femoral and tibial anatomy, and 3D printing technology was used to manufacture these porous titanium cones. The stability of the new titanium cones and the widely-used tantalum cones were compared under physiologic loading conditions in bench top test model.

Results: The stability of the new titanium cones was either equivalent or better than the tantalum cones. The new titanium femoral cone construct had significantly less micromotion compared with the traditional femoral cone construct in 5 of the 12 directions measured (P < .05), whereas no statistical difference was found in 7 directions. The new porous titanium metaphyseal tibial cones demonstrated less micromotion in medial varus/valgus (P = .004) and posterior compressive micromotion (P = .002) compared with the traditional porous tantalum system.

Conclusion: The findings of this biomechanical study demonstrate satisfactory mechanical stability of an anatomical-based porous titanium metaphyseal cone system for femoral and tibial bone loss as measured by micromotion under physiologic loading. The new cone design, in combination with instrumentation that facilitates surgical efficiency, is encouraging. Long-term clinical follow-up is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2017.01.013DOI Listing

Publication Analysis

Top Keywords

porous titanium
24
titanium metaphyseal
16
metaphyseal cones
12
femoral tibial
12
physiologic loading
12
titanium cones
12
cones
10
porous
9
titanium
9
cones revision
8

Similar Publications

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF
Article Synopsis
  • Cage subsidence can negatively affect lumbar fusion procedures, with material selection (PEEK vs. 3D-Ti) influencing this issue; the study aims to compare their subsidence rates.
  • The systematic search reviewed 265 patients from three high-quality studies, focusing on cage subsidence and classified subsidence rates using a specific method.
  • Results indicated that 3D-Ti cages have a significantly lower rate of subsidence compared to PEEK cages, with less severe subsidence and better overall performance.
View Article and Find Full Text PDF

Background: Treating infectious bone defects combined with large soft-tissue lesions poses significant clinical challenges. Herein, we introduced a modified two-stage treatment approach involving the implantation of 3D-printed prostheses and flap repair to treat large segmental infectious tibial bone defects.

Method: We conducted a retrospective study of 13 patients treated at our center between April 2018 and March 2022 for tibial infections owing to posttraumatic infection and chronic osteomyelitis combined with soft tissue defects.

View Article and Find Full Text PDF

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!