Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2017.02.002 | DOI Listing |
Mol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Genomic projections of (mal)adaptation under future climate change, known as genomic offset, faces limited application due to challenges in validating model predictions. Individuals inhabiting regions with high genomic offset are expected to experience increased levels of physiological stress as a result of climate change, but documenting such stress can be challenging in systems where experimental manipulations are not possible. One increasingly common method for documenting physiological costs associated with stress in individuals is to measure the relative length of telomeres-the repetitive regions on the caps of chromosomes that are known to shorten at faster rates in more adverse conditions.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.
Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neurogenomics & Informatics Center, St. Louis, MO, USA.
Background: Clear sex differences exist in AD and PD. Several studies examined genetic regulations for AD phenotypes and gene expression data in a sex-specific manner, identifying some differences between males and females. In contrasts, although proteins are final effectors of most physiological pathways and important drug targets, sex-specific regulations for proteins remain vastly understudied.
View Article and Find Full Text PDFNew Phytol
January 2025
Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037-100210, USA.
The shift to reductionist biology at the dawn of the genome era yielded a 'parts list' of plant genes and a nascent understanding of complex biological processes. Today, with the genomics era in full swing, advances in high-definition genomics enabled precise temporal and spatial analyses of biological systems down to the single-cell level. These insights, coupled with artificial intelligence-driven in silico design, are propelling the development of the first synthetic plants.
View Article and Find Full Text PDFNat Commun
January 2025
IBENS, Département de biologie, École normale supérieure, Université PSL, CNRS, INSERM, 75005, Paris, France.
Current temporal studies of DNA replication are either low-resolution or require complex cell synchronisation and/or sorting procedures. Here we introduce Nanotiming, a single-molecule, nanopore sequencing-based method producing high-resolution, telomere-to-telomere replication timing (RT) profiles of eukaryotic genomes by interrogating changes in intracellular dTTP concentration during S phase through competition with its analogue bromodeoxyuridine triphosphate (BrdUTP) for incorporation into replicating DNA. This solely demands the labelling of asynchronously growing cells with an innocuous dose of BrdU during one doubling time followed by BrdU quantification along nanopore reads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!