Importance: Chemotherapy may induce alopecia. Although scalp cooling devices have been used to prevent this alopecia, efficacy has not been assessed in a randomized clinical trial.

Objectives: To assess whether a scalp cooling device is effective at reducing chemotherapy-induced alopecia and to assess adverse treatment effects.

Design, Setting, And Participants: Multicenter randomized clinical trial of women with breast cancer undergoing chemotherapy. Patients were enrolled from December 9, 2013, to September 30, 2016. One interim analysis was planned to allow the study to stop early for efficacy. Data reported are from the interim analysis. This study was conducted at 7 sites in the United States, and 182 women with breast cancer requiring chemotherapy were enrolled and randomized.

Interventions: Participants were randomized to scalp cooling (n = 119) or control (n = 63). Scalp cooling was done using a scalp cooling device.

Main Outcomes And Measures: The primary efficacy end points were successful hair preservation assessed using the Common Terminology Criteria for Adverse Events version 4.0 scale (grade 0 [no hair loss] or grade 1 [<50% hair loss not requiring a wig] were considered to have hair preservation) at the end of 4 cycles of chemotherapy by a clinician unaware of treatment assignment, and device safety. Secondary end points included wig use and scores on the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30, Hospital Anxiety and Depression Scale, and a summary scale of the Body Image Scale.

Results: At the time of the interim analysis, 142 participants were evaluable. The mean (SD) age of the patients was 52.6 (10.1) years; 36% (n = 51) received anthracycline-based chemotherapy and 64% (n = 91) received taxane-based chemotherapy. Successful hair preservation was found in 48 of 95 women with cooling (50.5%; 95% CI, 40.7%-60.4%) compared with 0 of 47 women in the control group (0%; 95% CI, 0%-7.6%) (success rate difference, 50.5%; 95% CI, 40.5%-60.6%). Because the 1-tailed P value from the Fisher exact test was <.001, which crossed the superiority boundary (P = .0061), the data and safety monitoring board recommended study termination on September 26, 2016. There were no statistically significant differences in changes in any of the scales of quality of life from baseline to chemotherapy cycle 4 among the scalp cooling and control groups. Only adverse events related to device use were collected; 54 adverse events were reported in the cooling group, all grades 1 and 2. There were no serious adverse device events.

Conclusions And Relevance: Among women with stage I to II breast cancer receiving chemotherapy with a taxane, anthracycline, or both, those who underwent scalp cooling were significantly more likely to have less than 50% hair loss after the fourth chemotherapy cycle compared with those who received no scalp cooling. Further research is needed to assess longer-term efficacy and adverse effects.

Trial Registration: clinicaltrials.gov Identifier: NCT01986140.

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2016.20939DOI Listing

Publication Analysis

Top Keywords

scalp cooling
24
breast cancer
12
randomized clinical
12
cooling device
8
undergoing chemotherapy
8
clinical trial
8
women breast
8
interim analysis
8
scalp
7
cooling
5

Similar Publications

Evolution of long scalp hair in humans.

Br J Dermatol

January 2025

Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.

The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago.

View Article and Find Full Text PDF

Chemotherapy-induced alopecia (CIA) represents one of the most common side effects of cancer treatment. Currently, scalp cooling systems are utilized to treat CIA, but their safety and effectiveness remain limited. The objective of this study was to investigate the effect of fucoidan on CIA and to elucidate the possible mechanism of fucoidan in treating CIA.

View Article and Find Full Text PDF

Purpose: Scalp cooling therapy (SCT) improves chemotherapy-induced alopecia (CIA), but there are few published data about its efficacy in an Asian-predominant population. We report our tertiary institution experience of SCT in patients with breast or gynaecological cancers undergoing chemotherapy.

Methods: The Paxman scalp cooling system was employed for eligible women with breast or gynaecological cancers receiving anthracycline or taxane-based chemotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to determine if scalp cooling can enhance the effects of transcranial direct current stimulation (tDCS) on motor cortex excitability.
  • It involved 105 healthy participants in a randomized, double-blind design where various tDCS protocols and scalp cooling were tested, with motor evoked potentials measured to assess changes in brain excitability.
  • Results indicated that neither tDCS nor scalp cooling produced measurable improvements in motor cortex excitability, suggesting that these methods do not alter cortical excitability effectively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!