Microcapsules for controlled chemical release and uptake are important in many industrial applications but are often difficult to produce with the desired combination of high mechanical strength and high shell permeability. Using water-oil-water double emulsions made in microfluidic devices as templates, we developed a processing route to obtain mechanically robust microcapsules exhibiting a porous shell structure with controlled permeability. The porous shell consists of a network of interconnected polymer particles that are formed upon phase separation within the oil phase of the double emulsion. Porosity is generated by an inert diluent incorporated in the oil phase. The use of undecanol and butanol as inert diluents allows for the preparation of microcapsules covering a wide range of shell-porosity and force-at-break values. We found that the amount and chemical nature of the diluent influence the shell porous structure by changing the mechanism of phase separation that occurs during polymerization. In a proof-of-concept experiment, we demonstrate that the mechanically robust microcapsules prepared through this simple approach can be utilized for the on-demand release of small molecules using a pH change as exemplary chemical trigger.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b04408DOI Listing

Publication Analysis

Top Keywords

phase separation
12
double emulsions
8
mechanically robust
8
robust microcapsules
8
porous shell
8
oil phase
8
phase
5
strong microcapsules
4
microcapsules permeable
4
porous
4

Similar Publications

In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH)) and oxidized dextran (ODex). They were subsequently reacted via -NH and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA).

View Article and Find Full Text PDF

A highly sensitive and rapid LC-MS/MS method was developed and validated for the quantification of dexamethasone in rat plasma and brain tissue. Protein precipitation method was used for sample preparation. The separation of dexamethasone and the IS (labetalol) was achieved on an Atlantis dC column using an isocratic mobile phase (10 mM ammonium formate and acetonitrile, 25/75, v/v) delivered at 0.

View Article and Find Full Text PDF

Simultaneous Determination of Vitamins A and E and Their Generated Metabolites in Human Serum by LC-MS/MS.

Biomed Chromatogr

January 2025

Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing, China.

In the context of personalized and precision medicine, simultaneous monitoring of different forms of vitamins A and E and their metabolites could help us better understand the status of vitamins A and E in the body. The aim of this study was to establish a method for simultaneous determination of 13 kinds of vitamins A and E and their metabolites in human serum. Serum samples were directly detected by LC-MS/MS after deproteinization.

View Article and Find Full Text PDF

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

Long-acting injectable in situ forming implants: Impact of polymer attributes and API.

Int J Pharm

December 2024

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA. Electronic address:

Poly(DL-lactide-co-glycolide) (PLGA) and N-methyl-2-pyrrolidone (NMP)-based in situ forming implants are liquid formulations that solidify through phase separation following injection into the body. Drug is dissolved or suspended in the final formulation liquid prior to injection. Depending on the polymers used, the depots formed can deliver drug over different periods of time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!