Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323046PMC
http://dx.doi.org/10.7554/eLife.23063DOI Listing

Publication Analysis

Top Keywords

smcr8
8
smcr8 ulk1
8
kinase activity
8
activity gene
8
gene expression
8
autophagy
7
multiplex image-based
4
image-based autophagy
4
autophagy rnai
4
rnai screening
4

Similar Publications

Article Synopsis
  • C9orf72 is a significant genetic factor in ALS, and understanding its mutations is important for developing new therapies.
  • The study identified key interactors in the C9orf72 protein network, with SMCR8 being a notable candidate due to its high connectivity which may influence the disease mechanism.
  • Analysis of mutations, particularly I525T, revealed that while the mutant protein is initially less stable, it eventually achieves a stability similar to the wild-type and forms a stronger complex with SMCR8, suggesting alterations in binding that could contribute to ALS pathology.
View Article and Find Full Text PDF

Exploring dysregulated miRNAs in ALS: implications for disease pathogenesis and early diagnosis.

Neurol Sci

November 2024

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.

Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease marked by motor neuron degeneration, leading to muscle weakness and paralysis, with no effective treatments available. Early diagnosis could slow disease progression and optimize treatment. MicroRNAs (miRNAs) are being investigated as potential biomarkers due to their regulatory roles in cellular processes and stability in biofluids.

View Article and Find Full Text PDF

Abnormal nucleotide insertions of C9orf72, which forms a complex with Smith-Magenis syndrome chromosomal region candidate gene 8 (SMCR8) protein and WD repeat-containing protein 41 (WDR41) protein, are associated with an autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 1 (FTDALS1). The differentially expressed in normal and neoplastic cells (DENN) domain-containing C9orf72 and its complex with SMCR8 and WDR41 function as a guanine-nucleotide exchange factor for Rab GTP/GDP-binding proteins (Rab GEF, also called Rab activator). Among Rab proteins serving as major effectors, there exists Rab11a.

View Article and Find Full Text PDF

The C9orf72-SMCR8 complex suppresses primary ciliogenesis as a RAB8A GAP.

Autophagy

May 2024

Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University and National Collaborative Innovation Center, Chengdu, P.R. China.

Approximately half of the familial cases of amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD) are attributed to the abnormal GGGGCC repeat expansion within the first intron of , potentializing and its product as the most promising target for ALS therapeutics. Nevertheless, the biological function of C9orf72 remains unclear. Previously, we reported that C9orf72 and its binding partner, SMCR8, form a GTPase-activating protein (GAP) complex, which is proposed to regulate membrane trafficking and autophagy.

View Article and Find Full Text PDF

ALS-linked C9orf72-SMCR8 complex is a negative regulator of primary ciliogenesis.

Proc Natl Acad Sci U S A

December 2023

Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China.

Massive GGGGCC (G4C2) repeat expansion in and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!