Flexible threadlike supercapacitors with improved performance are needed for many wearable electronics applications. Here, we report a high performance flexible asymmetric all-solid-state threadlike supercapacitor with a NiCo Se positive electrode and a NiCo O @PPy (PPy: polypyrrole) negative electrode. The as-prepared electrodes display outstanding volume specific capacitance (14.2 F cm ) and excellent cycling performance (94 % retention after 5000 cycles at 0.6 mA) owing to their nanosheet and nanosphere structures. The asymmetric all-solid-state threadlike supercapacitor expanded the stability voltage window from 0-1.0 V to 0-1.7 V and exhibits high volume energy density (5.18 mWh cm ) and superior flexibility under different bending conditions. This study provides a scalable method for fabricating high performance flexible supercapacitors from easily available materials for use in wearable and portable electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201700149 | DOI Listing |
Nat Mater
January 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
Van der Waals materials display rich structural polymorphs with distinct physical properties. An atomistic understanding of the phase-transition dynamics, propagation pathway and associated evolution of physical properties is essential for capturing their potential in practical technologies. However, direct visualization of the rapid phase-transition process is fundamentally challenging due to the inherent trade-offs among atomic resolution, field of view and imaging frame rate.
View Article and Find Full Text PDFPLoS One
January 2025
School of Statistics, Jilin University of Finance and Economics, Changchun, Jilin, China.
The rapid development of the field of vehicles exposes many problems of charging station, the most common is the uncertainty and asymmetry of its task volume, so the flexibility of location and scale design is crucial. This paper proposes the asymptotic BLSCP model, suitable for uncertain and asymmetric environments, which balances facility workload and minimizes cost through the forward or backward asymptotic methods of candidate center locations and flexible allocation of jurisdictions. Additionally, the findings suggest these methods possess considerable potential for application and generalization.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
College of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China.
Using bidirectional fluid-structure interaction technology, the dorsal-ventral motion of the dolphin tail fin was simulated, and the feasibility of the numerical simulation method was validated through underwater motion experiments. This study investigated the effects of structural parameters and motion modes of bionic dolphin tail fins on their propulsion performance. The results show that flexible tail fins can enhance propulsion performance.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.
The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:
High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!