Neuropathic pain symptoms respond poorly to available therapeutics, with most treated patients reporting unrelieved pain and significant impairment in daily life. Here, we show that Pannexin 1 (Panx1) in hematopoietic cells is required for pain-like responses following nerve injury in mice, and a potential therapeutic target. Panx1 knockout mice (Panx1) were protected from hypersensitivity in two sciatic nerve injury models. Bone marrow transplantation studies show that expression of functional Panx1 in hematopoietic cells is necessary for mechanical hypersensitivity following nerve injury. Reconstitution of irradiated Panx1 knockout mice with hematopoietic Panx1 cells engineered to re-express Panx1 was sufficient to recover hypersensitivity after nerve injury; this rescue required expression of a Panx1 variant that can be activated by G protein-coupled receptors (GPCRs). Finally, chemically distinct Panx1 inhibitors blocked development of nerve injury-induced hypersensitivity and partially relieved this hypersensitivity after it was established. These studies indicate that Panx1 expressed in immune cells is critical for pain-like effects following nerve injury in mice, perhaps via a GPCR-mediated activation mechanism, and suggest that inhibition of Panx1 may be useful in treating neuropathic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307344PMC
http://dx.doi.org/10.1038/srep42550DOI Listing

Publication Analysis

Top Keywords

nerve injury
20
neuropathic pain
12
panx1
11
panx1 hematopoietic
8
hematopoietic cells
8
injury mice
8
panx1 knockout
8
knockout mice
8
hypersensitivity nerve
8
nerve
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!