Transcriptome analysis around the onset of strawberry fruit ripening uncovers an important role of oxidative phosphorylation in ripening.

Sci Rep

Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.

Published: February 2017

Although much progress has been made towards understanding the ripening of non-climacteric fruit using the strawberry as a model plant, the defined molecular mechanisms remain unclear. Here, RNA-sequencing was performed using four cDNA libraries around the onset of ripening, and a total of 31,793 unigenes and 335 pathways were annotated including the top five pathways, which were involved in ribosome, spliceosome, protein processing, plant-pathogen interaction and plant hormone signaling, and the important DEGs related to ripening were annotated to be mainly involved in protein translation and processing, sugar metabolism, energy metabolism, phytohormones, antioxidation, pigment and softening, especially finding a decreased trend of oxidative phosphorylation during red-coloring. VIGS-mediated downregulation of the pyruvate dehydrogenase gene PDHE1α, a key gene for glycolysis-derived oxidative phosphorylation, could inhibit respiration and ATP biosynthesis, whilst promote the accumulation of sugar, ABA, ETH, and PA, ultimately accelerating the ripening. In conclusion, our results demonstrate that a set of metabolism transition occurred during green-to-white-to-red stages that are coupled with more-to-less DEGs, and the oxidative phosphorylation plays an important role in the regulation of ripening. On the basis of our results, we discuss an oxidative phosphorylation-based model underlying strawberry fruit ripening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307319PMC
http://dx.doi.org/10.1038/srep41477DOI Listing

Publication Analysis

Top Keywords

oxidative phosphorylation
16
strawberry fruit
8
ripening
8
fruit ripening
8
oxidative
5
transcriptome analysis
4
analysis onset
4
onset strawberry
4
ripening uncovers
4
uncovers role
4

Similar Publications

Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.

View Article and Find Full Text PDF

Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.

View Article and Find Full Text PDF

The necrosis of pancreatic acinar cells is a key molecular event in the progression of acute pancreatitis (AP), with disturbances in mitochondrial energy metabolism considered to be a direct causative factor of acinar cell necrosis. Histidine triad nucleotide-binding protein 2 (HINT2) has been implicated in the development of various diseases, whereas its involvement in the progression of AP remains unclear. This study aims to investigate the role of HINT2 in AP.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.

Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.

View Article and Find Full Text PDF

Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!