pH-sensitive micelles for the intracellular co-delivery of curcumin and Pluronic L61 unimers for synergistic reversal effect of multidrug resistance.

Sci Rep

Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China.

Published: February 2017

Pluronic L61 unimers, which are biomacromolecular modulators, and curcumin, a small-molecule modulator, were co-formulated into pH-sensitive micelles to reveal the full synergistic potential of combination drug treatments to reverse multidrug resistance (MDR). Compared to monotherapy, combined therapy significantly improved the cytotoxicity, cellular uptake and apoptotic effects of doxorubicin (DOX) against MCF-7/ADR cells. In mechanistic studies, both L61 and curcumin enhanced the cytotoxic effect by acting on mitochondrial signalling pathways. The compounds selectively accumulated in the mitochondria and disabled the mitochondria by dissipating the mitochondrial membrane potential, decreasing the ATP levels, and releasing cytochrome c, which initiated a cascade of caspase-9 and caspase-3 reactions. Furthermore, both curcumin and L61 down-regulated the expression and function of P-gp in response to drug efflux from the MCF-7/ADR cells. In the MCF-7/ADR tumour-bearing mouse model, intravenous administration of the combined therapy directly targeted the tumour, as revealed by the accumulation of DiR in the tumour site, which led to a significant inhibition of tumour growth without measurable side effects. In conclusion, co-formulation consisting of L61 and curcumin in pH-sensitive micelles induced significant synergistic effects on the reversal of MDR. Therefore, the intracellular co-delivery of various MDR modulators has great potential to reverse MDR in tumours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307950PMC
http://dx.doi.org/10.1038/srep42465DOI Listing

Publication Analysis

Top Keywords

ph-sensitive micelles
12
intracellular co-delivery
8
pluronic l61
8
l61 unimers
8
multidrug resistance
8
combined therapy
8
mcf-7/adr cells
8
l61 curcumin
8
curcumin
5
l61
5

Similar Publications

Clearance of Intracellular Pathogens with Hyaluronic Acid Nanomicelles Responsive to HS and pH.

Molecules

December 2024

Engineering Laboratory of Chemical Resources Utilization in South Xinjiang, Tarim University, Alar 843300, China.

Hyaluronic acid (HA) is an acidic mucopolysaccharide of animal origin composed of repeating disaccharide units of N-acetylglucosamine and glucuronic acid. Due to its excellent biocompatibility, biodegradability, and selective affinity for CD44 receptors on cell surfaces, HA is widely employed as a drug carrier. In our study, we aimed to target subcellular bacteria by grafting cystamine onto HA scaffolds through an amide reaction, producing a linker responsive to HS and pH changes.

View Article and Find Full Text PDF

Bladder instillation of chemo-therapeutic agents is common for bladder cancer (BC) treatment, however, due to the poor tissue selectivity of chemotherapeutic agents, this method suffers from bladder irritation or even chemical cystitis. Here, we designed a hydroxyethyl starch-based prodrug for epirubicin (EPI) using a pH-sensitive hydrazone linker and folate as the active targeting moiety (FA-HES-hyd-EPI) to achieve delivery selectivity. Prodrug micelles decorated with FA (FA-m), with diameter of 203.

View Article and Find Full Text PDF

Due to the lack of specific symptoms, hepatocellular carcinoma (HCC) is often detected in advanced stages. However, pharmacological systemic therapy, a common clinical treatment for advanced HCC, is prone to serious toxic side effects. To address these issues, we designed a pH-sensitive sorafenib and schisandrin B micelle modified by methotrexate (MTX-SOR/SchB micelles), a nanosystem that combines the advantages of targeted delivery and pH sensitivity, and is capable of improving drug bioavailability and mitigating drug toxic side effects.

View Article and Find Full Text PDF

CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side effecs, and obtain enhanced antitumor effects.

View Article and Find Full Text PDF

A dual-STING-activating nanosystem expands cancer immunotherapeutic temporal window.

Cell Rep Med

November 2024

Department of Pharmaceutics, Jiang Su Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Stimulator of interferon genes (STING) is a promising antitumor target via bridging innate and adaptive immunity, yet the transient nature of immune signal transduction renders small-molecule agonists susceptible to short time effectiveness. Here, we report a dual-STING-activating micelle system (D-SAM) to dynamically program STING kinetics. Mechanistically, the natural ligand cGAMP encapsulated in D-SAM initiates STING signaling, while the pH-sensitive polymeric agonist PC7A disassembled from micelle shell buffers lysosomal protons and retards STING degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!