The domestic pig is an important "dual purpose" animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community for the use of large animal models such as pigs to either serve as an alternative, or complement investigations from the mouse. However, the use of pig has not proven popular due to technical difficulties and time required in generating models with desired genetic modifications. In this regard, the ability to directly modify the genome in the zygote and generate edited animals is highly desirable. This report demonstrates for the first time, the generation of gene targeted animals by direct injection of Cas9 ribonucleoprotein complex and short stretches of DNA sequences into porcine zygotes. The Cas9 protein from Streptococcus pyogenes was pre-complexed with a single guide RNA targeting downstream of the ubiquitously expressed COL1A gene, and co-injected with a single-stranded repair template into porcine zygotes. Using this approach a line of pigs that carry pseudo attP sites within the COL1A locus to enable phiC31 integrase mediated introduction of transgenes has been generated. This new route for genome engineering in pigs via zygote injection should greatly enhance applications in both agriculture and biomedicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307959 | PMC |
http://dx.doi.org/10.1038/srep42458 | DOI Listing |
J Mol Cell Biol
January 2025
Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China.
The zygotic genome activation (ZGA) is crucial for the development of pre-implantation embryos. Long noncoding RNAs (lncRNAs) play significant roles in many biological processes, but the study on their role in the early embryonic development of pigs is limited. In this study, we identify lncFKBPL as an enhancer-type lncRNA essential for pig embryo development.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.
Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany.
Zygote
December 2024
National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Area, College of Animal Science and Technology, China Agricultural University, Beijing100193, P.R. China.
production of porcine embryos is a complicated process that includes maturation (IVM), fertilization (IVF) and culture (IVC). Insufficient cytoplasmic maturation, slow zona reaction and improper embryo culture conditions will compromise the efficiency of porcine embryo production . Previous studies have shown that insulin-transferrin-selenium (ITS) in IVM or IVC medium could improve porcine oocyte maturation, decrease polyspermy fertilization and promote subsequent embryonic development .
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China. Electronic address:
Alternative splicing (AS) is a pivotal posttranscriptional regulatory mechanism that is involved in embryonic development. However, the roles of AS in specific developmental events, especially the zygotic genome activation (ZGA) of porcine early embryos, remain unclear. In this study, we demonstrated that alternative splicing events (ASEs) were most prevalent in mammalian embryos during ZGA and that skipped exons were the predominant splicing pattern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!