The domestic pig is an important "dual purpose" animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community for the use of large animal models such as pigs to either serve as an alternative, or complement investigations from the mouse. However, the use of pig has not proven popular due to technical difficulties and time required in generating models with desired genetic modifications. In this regard, the ability to directly modify the genome in the zygote and generate edited animals is highly desirable. This report demonstrates for the first time, the generation of gene targeted animals by direct injection of Cas9 ribonucleoprotein complex and short stretches of DNA sequences into porcine zygotes. The Cas9 protein from Streptococcus pyogenes was pre-complexed with a single guide RNA targeting downstream of the ubiquitously expressed COL1A gene, and co-injected with a single-stranded repair template into porcine zygotes. Using this approach a line of pigs that carry pseudo attP sites within the COL1A locus to enable phiC31 integrase mediated introduction of transgenes has been generated. This new route for genome engineering in pigs via zygote injection should greatly enhance applications in both agriculture and biomedicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307959PMC
http://dx.doi.org/10.1038/srep42458DOI Listing

Publication Analysis

Top Keywords

porcine zygotes
12
targeted gene
4
gene knock-in
4
knock-in crispr/cas
4
crispr/cas ribonucleoproteins
4
ribonucleoproteins porcine
4
zygotes domestic
4
domestic pig
4
pig "dual
4
"dual purpose"
4

Similar Publications

A long noncoding RNA with enhancer-like function in pig zygotic genome activation.

J Mol Cell Biol

January 2025

Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China.

The zygotic genome activation (ZGA) is crucial for the development of pre-implantation embryos. Long noncoding RNAs (lncRNAs) play significant roles in many biological processes, but the study on their role in the early embryonic development of pigs is limited. In this study, we identify lncFKBPL as an enhancer-type lncRNA essential for pig embryo development.

View Article and Find Full Text PDF

Myo-inositol improves developmental competence and reduces oxidative stress in porcine parthenogenetic embryos.

Front Vet Sci

December 2024

Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.

Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • - In xenotransplantation research, genetically modified pigs are crucial, with traditional methods like somatic cell nuclear transfer being lengthy and complex, prompting the need for more efficient gene editing techniques.
  • - The study explores the use of CRISPR/Cas9 and different delivery methods (electroporation vs. microinjection) to edit genes in pig zygotes, aiming to create triple-knock-out embryos targeting key porcine xenoantigens.
  • - Results showed that higher voltage during electroporation improved gene editing efficiency without significantly affecting embryo development, but mosaicism remained a common issue across all methods, highlighting the need for further optimization in genome editing approaches.
View Article and Find Full Text PDF

Insulin-transferrin-selenium supplementation improves porcine embryo production .

Zygote

December 2024

National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Area, College of Animal Science and Technology, China Agricultural University, Beijing100193, P.R. China.

production of porcine embryos is a complicated process that includes maturation (IVM), fertilization (IVF) and culture (IVC). Insufficient cytoplasmic maturation, slow zona reaction and improper embryo culture conditions will compromise the efficiency of porcine embryo production . Previous studies have shown that insulin-transferrin-selenium (ITS) in IVM or IVC medium could improve porcine oocyte maturation, decrease polyspermy fertilization and promote subsequent embryonic development .

View Article and Find Full Text PDF

The splicing factor SF3B1 is essential for proper alternative splicing and zygotic genome activation in early porcine embryos.

Int J Biol Macromol

December 2024

College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China. Electronic address:

Alternative splicing (AS) is a pivotal posttranscriptional regulatory mechanism that is involved in embryonic development. However, the roles of AS in specific developmental events, especially the zygotic genome activation (ZGA) of porcine early embryos, remain unclear. In this study, we demonstrated that alternative splicing events (ASEs) were most prevalent in mammalian embryos during ZGA and that skipped exons were the predominant splicing pattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!