Climatic tolerance, especially drought tolerance, is one of the major factors shaping the geographic distributions of plant species. Thus, the general decline in rainfall from the Himalaya-Hengduan Mountains (HHM) to the inner Qinghai-Tibet Plateau (QTP) might account for the significant differences in species distributions and richness between the two regions. To test this hypothesis, we conducted a water stress experiment using four Anisodus species (A. tanguticus, A. luridus, A. carniolicoides and A. acutangulus), which were treated with different levels of water stress in a glasshouse, and examined their differences in physiological responses. The results suggest that A. tanguticus, which inhabits the inner QTP, generally has higher fitness under severe water stress than the other species based on its high root:shoot ratio, long-term water use efficiency and photosynthetic rate, indicating that it possesses a genetically based drought tolerance mechanism. Our results suggest that plant species inhabiting the inner QTP may be more drought tolerant than those inhabiting the HHM regions. This provides a new example supporting the hypothesis that climatic tolerance plays a major role in shaping plant distributions on the QTP and its adjacent highlands and presents new insights into the patterns of geographic distribution and diversity of the plants inhabiting these areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307960PMC
http://dx.doi.org/10.1038/srep42466DOI Listing

Publication Analysis

Top Keywords

drought tolerance
12
water stress
12
geographic distributions
8
qinghai-tibet plateau
8
adjacent highlands
8
climatic tolerance
8
plant species
8
inner qtp
8
tolerance
5
species
5

Similar Publications

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

Drought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.

View Article and Find Full Text PDF

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.

View Article and Find Full Text PDF

Sucrose synthase gene family in common bean during pod filling subjected to moisture restriction.

Front Plant Sci

December 2024

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.

Article Synopsis
  • Drought significantly impacts leaf photosynthesis in common beans, but some cultivars compensate by using pod walls as carbohydrate reservoirs for seed filling.
  • A genome-wide analysis of the sucrose synthase (SUS) gene family revealed 7 genes with varying structures and evolutionary relationships among plant species.
  • Experiments showed increased SUS activity and higher fructose and sucrose levels in pods under water restriction, indicating enhanced transport and metabolic processes during seed development under drought conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!