Introduction: Mixed-phenotype acute leukemias (MPALs) are a heterogeneous group of rare leukemias constituting approximately 2%-5% of all leukemias, in which assigning a single lineage of origin is not possible. They are diagnosed by either the presence of antigens of more than one lineage or by the presence of dual population of blasts belonging to two or more lineages. We highlight the clinicopathological, immunophenotype, and genetic data of a cohort (n = 14) of patients diagnosed and treated at our center.
Materials And Methods: We retrospectively analyzed consecutive cases of MPAL diagnosed in our flow cytometry laboratory from May 2012 to August 2015. These cases were diagnosed based on immunophenotyping of peripheral blood/bone marrow aspirates and morphology/genetics wherever available as per the World Health Organization (WHO) 2008 guideline.
Results: Among 628 consecutive acute leukemia (AL) cases diagnosed and evaluated during this period, we identified 14 (2.2%) patients with MPAL fulfilling WHO 2008/EGIL criteria for immunological characterizing of AL criteria. Majority of these were males (n = 8, male:female ratio 1.3:1) and adults (n = 11, 78.5%). The median age of this cohort was 41 years (range 2-80). These cases were further classified as: B/myeloid (n = 9), T/myeloid (n = 4), and B/T MPAL (n = 1). Cytogenetics was available in 12 out of 14 cases, out of which, three cases had normal karyotype, three with t(9;22)(q34;q11), and two cases with complex karyotype. We also came across a rare case of B + T lymphoid MPAL who had mixed-lineage leukemia gene t(v; 11q23) rearrangement.
Conclusion: MPAL is a complex entity with heterogeneous clinical, immunophenotypic, cytogenetic, and molecular features. Multiparametric flowcytometry by using comprehensive antibody panels is a valuable tool for diagnosis. Subsequent cytogenetic and molecular analysis for further prognostic stratification and treatment modalities are important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0377-4929.200057 | DOI Listing |
Histochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA.
Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .
Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.
Front Oncol
January 2025
Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
Objective: Analyze the outcomes of critically ill patients who developed new-onset organ dysfunction and received systemic chemotherapy during their ICU stay.
Design: Retrospective cohort study.
Setting: A tertiary medical center in Germany with an Intensive Care Medicine department consists of 11 intensive care units comprising 140 beds, serving all subspecialties of adult intensive care medicine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!