On the Gold-Catalyzed Generation of Vinyl Cations from 1,5-Diynes.

Angew Chem Int Ed Engl

Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.

Published: March 2017

Conjugated 1,5-diynes bearing two aromatic units at the alkyne termini were converted in the presence of a gold catalyst. Under mild conditions, aryl-substituted dibenzopentalenes were generated. Calculations predict that aurated vinyl cations are key intermediates of the reaction. A bidirectional approach provided selective access to the angular annulated product in high yield, which was explained by calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201700057DOI Listing

Publication Analysis

Top Keywords

vinyl cations
8
gold-catalyzed generation
4
generation vinyl
4
cations 15-diynes
4
15-diynes conjugated
4
conjugated 15-diynes
4
15-diynes bearing
4
bearing aromatic
4
aromatic units
4
units alkyne
4

Similar Publications

-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9-BBN.

Org Lett

January 2025

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

A 1,1-hydroboration of alkynylgermanes with unique -Ge/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α-boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne-Ge π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a /Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling.

View Article and Find Full Text PDF

Chromophores incorporated into rigid polymer matrices may exhibit novel photophysical properties distinct from those in liquid solutions. In this work, we explored the decay path of the second ππ* state (2ππ*) of riboflavin in poly(vinyl alcohol) (PVA) solutions and films with various acidities. Highly efficient internal conversion from 2ππ* to the lowest ππ* state (1ππ*) induced by slight in-plane motion is demonstrated in all PVA solutions and films, irrespective of environmental acidity and rigidification.

View Article and Find Full Text PDF

Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.

View Article and Find Full Text PDF
Article Synopsis
  • The hydrofluorination of enynoates allows for the efficient synthesis of fluorinated dienoates using a pyridinium tetrafluoroborate salt.
  • This method effectively converts various aryl-substituted enynoates into the desired fluorinated products with significant control over their stereochemistry and regioselectivity.
  • Mechanistic studies were performed to understand the reaction process better and to optimize the outcomes based on different reaction conditions.
View Article and Find Full Text PDF

Copper-Catalyzed Intermolecular [2 + 2 + 2] Annulation of Diynes with Alkynes: Construction of Carbazoles.

Org Lett

January 2025

Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Transition-metal-catalyzed [2 + 2 + 2] annulation of alkynes is an efficient pathway for the synthesis of aromatic compounds. However, most of the established methods require noble metal catalysts. Herein, we report a copper-catalyzed intermolecular [2 + 2 + 2] annulation of diynes with alkynes through vinyl cation intermediates, enabling the atom-economical preparation of biologically important carbazole skeletons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!