Morphological and physiological responses of different wheat genotypes to chilling stress: a cue to explain yield loss.

J Sci Food Agric

Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China.

Published: September 2017

Background: The eco-physiological mechanism of wheat yield loss resulting from chilling stress is a fundamental scientific issue. However, previous studies have focused on hexaploid wheats, and few studies on the morphological and physiological plasticity of wheat plants. Six different wheat genotypes were tested under chilling stress to investigate the physio-morphological parameters as well as the loss of grain yield in growth chambers.

Results: Chilling stress resulted in significant loss in grain yield in all genotypes. Under chilling stress, diploid wheats generated zero harvest, and tetraploid genotypes also suffered from a pronounced loss in grain yield, compared with the control group. In contrast, hexaploid genotypes acquired relatively high maintenance rate of grain yield among three species.

Conclusions: Diploid and tetraploid wheat genotypes maintained relatively large leaf area and high photosynthetic rates, but they were subjected to significant declines in vascular bundle number and productive tillers as a consequence of the inhibition by sink growth under chilling stress. The hexaploid wheats were found to have relatively low leaf area and photosynthetic rates. These genotypes also stored more soluble carbohydrates and exhibited stronger sink enhancement, ensuring the translocation and redistribution of assimilates. Our findings provided a new theoretical understanding of yield stabilization in the domestication process of wheat genotypes under chilling stress. © 2017 Her Majesty the Queen in Right of Canada. Journal of The Science of Food and Agriculture © 2017 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.8271DOI Listing

Publication Analysis

Top Keywords

chilling stress
28
wheat genotypes
16
grain yield
16
genotypes chilling
12
loss grain
12
morphological physiological
8
genotypes
8
yield loss
8
hexaploid wheats
8
leaf area
8

Similar Publications

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.

Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.

View Article and Find Full Text PDF

Background/objectives: Cold stress is the main environmental factor that affects the growth and development of rice, leading to a decrease in its yield and quality. However, the molecular mechanism of rice's low-temperature resistance remains incompletely understood.

Methods: In this study, we conducted a joint analysis of miRNA and mRNA expression profiles in the cold-resistant material Yongning red rice and the cold-sensitive material B3 using high-throughput sequencing.

View Article and Find Full Text PDF

The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals.

Antioxidants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.

View Article and Find Full Text PDF

Cold stress strongly hinders plant growth and development. However, the molecular and physiological adaptive mechanisms of cold stress tolerance in plants are not well understood. Plants adopt several morpho-physiological changes to withstand cold stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!