Fatty acid content in epididymal fluid and spermatozoa during sperm maturation in dogs.

J Anim Sci Biotechnol

Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Rua Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270 Brazil.

Published: February 2017

Background: During sperm maturation, there is a reorganization of fatty acids from plasmatic membrane of the spermatozoa, which allows higher membrane integrity and acquisition of sperm motility. However, the fatty acid profile during sperm maturation remains unclear in dogs. Thus, the aim of this study was to identify the fatty acids from the epididymal spermatozoa and plasma during the sperm maturation, and observed changes in the motility and plasmatic membrane parameters. Twenty one adult dogs were used, subsequently to bilateral orchiectomy and epididymal storage, sperm samples were collected from the different segments of the epididymis. Samples were evaluated for conventional microscopy, computer-assisted motility analysis, sperm plasma membrane permeability and the fatty acid analysis (lipids were extracted, transmethylated and analyzed by chromatography).

Results: Caput and corpus sperm showed lower values for the motility variables evaluated and plasmatic membrane integrity, indicating different levels of the fatty acids organization. Saturated, monounsaturated and polyunsaturated fatty acids were in higher concentrations in the spermatozoa from epididymis cauda. Highlighting the presence of caprylic, stearic and docosahexaenoic acids.

Conclusions: These findings demonstrate the influence of the fatty acid profile during sperm maturation, assigning physical and chemical changes in sperm cells, essential for fertilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299670PMC
http://dx.doi.org/10.1186/s40104-017-0148-6DOI Listing

Publication Analysis

Top Keywords

sperm maturation
20
fatty acid
16
fatty acids
16
plasmatic membrane
12
sperm
10
fatty
8
membrane integrity
8
acid profile
8
profile sperm
8
maturation
5

Similar Publications

Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.

View Article and Find Full Text PDF

Perfluorooctanoate and nano-titanium dioxide modulate male gonadal function in the mussel Mytilus coruscus.

Aquat Toxicol

January 2025

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China. Electronic address:

Perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO₂) are widely used in industrial applications such as manufacturing and textiles, and can be released into the environment, causing toxicity to marine organisms. To study the effects of these pollutants on the gonadal development, we exposed the males of Mytilus coruscus to varying PFOA concentrations (2 and 200 μg/L) alone or combined with nano-TiO (0.1 mg/L, size: 25 nm) for 14 days.

View Article and Find Full Text PDF

Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers.

Cell Biosci

January 2025

Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations.

View Article and Find Full Text PDF

From spermatogenesis to fertilisation: the role of melatonin on ram spermatozoa.

Domest Anim Endocrinol

January 2025

BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:

This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.

View Article and Find Full Text PDF

Purpose: To explore the impact of high body mass index (BMI) on the embryo quality and clinical outcomes of polycystic ovary syndrome (PCOS) patients, and the possible genes involved.

Methods: Patients who underwent in-vitro fertilization (IVF) treatment and embryo transfer in our center from November 2014 to September 2023, were divided into low BMI PCOS (LBP) group, high BMI PCOS (HBP) group, and high BMI control (HBC) group. Transcriptome sequencing was performed in eight PCOS patients' granulosa cells (GCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!