Animal Models of Emerging Tick-Borne Phleboviruses: Determining Target Cells in a Lethal Model of SFTSV Infection.

Front Microbiol

Molecular Virology and Host-Pathogen Interaction Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, HamiltonMT, USA; Department of Molecular Medicine, Mayo Clinic, RochesterMN, USA.

Published: January 2017

The pathogenesis of clinical manifestations caused by newly emerging tick-borne phleboviruses [i.e., Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV)], such as severe thrombocytopenia and lymphocytopenia, are not yet fully understood. In the present study, to establish an animal model mimicking the profile of fatal human cases, we examined the susceptibilities of adult mice from 12 strains, aged mice from two strains, and cynomolgus macaques to SFTSV and/or HRTV infections. However, none of these immunocompetent animals developed lethal diseases after infection with SFTSV or HRTV. Thus, we tested a lethal animal model of SFTSV infection using interferon-α/β receptor knock-out (IFNAR) mice to identify the target cell(s) of virus infection, as well as lesions that are potentially associated with hematological changes. IbaI-positive macrophages and Pax5-positive immature B cells overlapped with SFTSV-positive cells in the spleen and lymph nodes of IFNAR mice, and IbaI-SFTSV-double positive cells were also observed in the liver and kidney, thereby suggesting crucial roles for macrophages in the pathogenesis of SFTSV infection in mice. In the mandibular lymph nodes and spleens of infected mice, we observed extensive necrosis comprising B220-positive B cells, which may be associated with severe lymphocytopenia. The results of this study suggest a resemblance between the IFNAR mouse model and lethal infections in humans, as well as roles for multiple cells during pathogenesis in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5276813PMC
http://dx.doi.org/10.3389/fmicb.2017.00104DOI Listing

Publication Analysis

Top Keywords

sftsv infection
12
emerging tick-borne
8
tick-borne phleboviruses
8
target cells
8
model sftsv
8
animal model
8
mice strains
8
ifnar mice
8
lymph nodes
8
cells
7

Similar Publications

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne viral hemorrhagic fever caused by the severe fever with thrombocytopenia syndrome virus (SFTSV). This virus, which is transmitted through ticks, is prevalent in Asian countries, including Japan. This report describes two rare cases of SFTS with concurrent bacteremia.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with a human mortality rate of up to 30%, posing a significant threat to public health. However, the lack of suitable research models has impeded the development of effective human vaccines. In this study, we engineered transgenic mice (3xTg) using a novel construct that simultaneously expresses three C-type Lectin receptors, identified as critical SFTSV entry receptors.

View Article and Find Full Text PDF

The role of farmed animals in the viral spillover from wild animals to humans is of growing importance. Between July and September of 2023 infectious disease outbreaks were reported on six Arctic fox () farms in Shandong and Liaoning provinces, China, which lasted for 2-3 months and resulted in tens to hundreds of fatalities per farm. Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) was identified in tissue/organ and swab samples from all the 13 foxes collected from these farms.

View Article and Find Full Text PDF

Decoding broadly neutralizing antibodies: a milestone in SFTSV therapy.

EBioMedicine

December 2024

State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!