Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316805PMC
http://dx.doi.org/10.1038/ncomms14158DOI Listing

Publication Analysis

Top Keywords

single-domain antibodies
8
respiratory syncytial
8
syncytial virus
8
fusion protein
8
rsv
6
prefusion
5
potent single-domain
4
antibodies arrest
4
arrest respiratory
4
virus fusion
4

Similar Publications

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

Disrupting the interaction between matrix metalloproteinase-7 (MMP-7) and syndecan-2 (SDC-2) can yield anticancer effects in colon cancer cells. Here, a single-chain variable fragment (scFv) targeting the pro-domain of MMP-7 was generated as a potential candidate anticancer agent. Among the generated scFvs, those designated 1B7 and 1C3 showed the strongest abilities to inhibit the ability of MMP-7 pro-domain to directly interact with SDC-2 in vitro and decrease the cancer activities of human HT29 colon adenocarcinoma cells.

View Article and Find Full Text PDF

Oncolytic vaccinia virus armed with anti-CD47 nanobody elicit potent antitumor effects on multiple tumor models via enhancing innate and adoptive immunity.

J Immunother Cancer

December 2024

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China

Objective: Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).

Methods: To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb).

View Article and Find Full Text PDF

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!