Long Noncoding RNAs: At the Intersection of Cancer and Chromatin Biology.

Cold Spring Harb Perspect Med

Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305.

Published: July 2017

Although only 2% of the genome encodes protein, RNA is transcribed from the majority of the genetic sequence, suggesting a massive degree of cellular functionality is programmed in the noncoding genome. The mammalian genome contains tens of thousands of long noncoding RNAs (lncRNAs), many of which occur at disease-associated loci or are specifically expressed in cancer. Although the vast majority of lncRNAs have no known function, recurring molecular mechanisms for lncRNAs are now being observed in chromatin regulation and cancer pathways and emerging technologies are now providing tools to interrogate lncRNA molecular interactions and determine function of these abundant cellular macromolecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495049PMC
http://dx.doi.org/10.1101/cshperspect.a026492DOI Listing

Publication Analysis

Top Keywords

long noncoding
8
noncoding rnas
8
rnas intersection
4
intersection cancer
4
cancer chromatin
4
chromatin biology
4
biology genome
4
genome encodes
4
encodes protein
4
protein rna
4

Similar Publications

Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.

View Article and Find Full Text PDF

Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Identification and Validation of a m6A-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer.

J Cell Mol Med

January 2025

Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.

Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC.

View Article and Find Full Text PDF

B cell maturation is crucial for effective adaptive immunity. It requires a complex signalling network to mediate antibody diversification through mutagenesis. B cells also rely on queues from other cells within the germinal centre.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!