Effects of pressure and frictional heating on protein separation using monolithic columns in reversed-phase chromatography.

J Chromatogr A

Merck & Co., Inc., MRL, Department of Process Research & Development, Rahway, NJ 07065, USA.

Published: March 2017

Pressure is not typically controlled or adjusted independently of flow rate during method development in reversed-phase LC (RPLC). However, it has been shown that pressure has an effect on analyte molecular molar volume, and the magnitude of this effect is greater for proteins and ionizable compounds than neutral small molecules. This phenomenon has received attention recently in the context of porous sub-2-micron particle packed columns. The present study surveys the effect of pressure and frictional heating on RPLC separations using commercially-available monolithic columns at constant flow rate and with controlled external temperature. Because the current monoliths cannot be operated at high pressures, all experiments were conducted with pressures at or below 200bar. Nonetheless, substantial changes in retention were still observed; for example, an increase in pressure of 75bar shifted the retention factor for bovine insulin from 1.27 to 1.78, a 40% increase, while a similar experiment with the neutral small molecule, toluene, showed no change in retention. Results are presented from investigations of model peptides and proteins ranging in size from 1kDa to 30kDa, as well as experiments performed with a silica-based C18 monolith and a polystyrene divinylbenzene monolith functionalized with a phenyl stationary phase. This work indicates that protein separations in monoliths are highly pressure sensitive, and pressure should therefore be considered as an additional parameter in method development for optimizing retention and selectivity. Given these findings, and the ever-increasing importance of chromatographic separations of proteins in both industrial and academic laboratories, improved instrumentation and mechanisms for directly controlling system backpressure could be of great practical value.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2017.01.071DOI Listing

Publication Analysis

Top Keywords

pressure frictional
8
frictional heating
8
monolithic columns
8
flow rate
8
method development
8
neutral small
8
pressure
6
effects pressure
4
heating protein
4
protein separation
4

Similar Publications

Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions ( < 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor.

View Article and Find Full Text PDF

Friction is an unfavourable phenomenon in deep-drawing forming processes because it hinders the deformation processes and causes deterioration of the surface quality of drawpieces. One way to reduce the unfavourable effect of friction in deep-drawing processes is to use lubricants with the addition of hard particles. For this reason, this article presents the results of friction tests of dual-phase HCT600X+Z steel sheets using the flat die strip drawing test.

View Article and Find Full Text PDF

This study investigates the combustion characteristics and critical thermodynamic conditions for the ignition of TC4 and TC17 alloys under high-speed friction conditions. The results indicate that, under identical rubbing conditions, both the critical pressure and the ignition temperature of the TC17 alloy are higher than those of the TC4 alloy. The critical ignition conditions for both alloys increase with thickness, while they decrease with increasing rotational speed, oxygen concentration, and oxygen pressure.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

Currently, few studies have been conducted on the use of fluorocarbon resin (FEVE) and polytetrafluoroethylene (PTFE) as adhesive substrates and lubricating and anti-corrosion fillers, respectively, for the fabrication of PTFE-reinforced fluorocarbon composite coatings. In this paper, the tribological properties of polytetrafluoroethylene-reinforced fluorocarbon composite coatings were investigated through orthogonal tests under various operating conditions. The optimal configuration for coating preparation under dry friction and aqueous lubrication was thus obtained: the optimal filler particle size, mass ratio of FEVE to PTFE, spraying pressure, and curing agent content were 50 μm, 3:4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!