Tuberculosis (TB) remains one of the leading causes of mortality worldwide. Hence, the identification of highly effective antitubercular drugs with novel modes of action is crucial. In this paper, we report the discovery and development of pyrrolo[1,5-a]pyrazine-based analogues as highly potent inhibitors of the Mycobacterium tuberculosis (Mtb) acetyltransferase enhanced intracellular survival (Eis), whose up-regulation causes clinically observed resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN). We performed a structure-activity relationship (SAR) study to optimize these compounds as potent Eis inhibitors both against purified enzyme and in mycobacterial cells. A crystal structure of Eis in complex with one of the most potent inhibitors reveals that the compound is bound to Eis in the AG binding pocket, serving as the structural basis for the SAR. These Eis inhibitors have no observed cytotoxicity to mammalian cells and are promising leads for the development of innovative AG adjuvant therapies against drug-resistant TB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971065PMC
http://dx.doi.org/10.1021/acsinfecdis.6b00193DOI Listing

Publication Analysis

Top Keywords

eis inhibitors
12
enhanced intracellular
8
intracellular survival
8
mycobacterium tuberculosis
8
potent inhibitors
8
eis
6
inhibitors
5
combating enhanced
4
survival eis-mediated
4
eis-mediated kanamycin
4

Similar Publications

The present study examined the corrosion protection of aluminium in 1M HCl by deploying expired danacid, with techniques such as gravimetric, electrochemical, and density functional theory (DFT). Inhibitor characterization was executed with Fourier transform infrared (FTIR) spectroscopy and gas chromatography mass spectrometry (GC-MS), which was supplemented by optimization of parameters with response surface methodology. The results of gravimetric study indicates that the inhibition efficiency (IE) rose with rise in danacid concentration and reduced with rise in temperature.

View Article and Find Full Text PDF

Extraction of lignin from lignocellulosic biomass (bagasse) as a green corrosion inhibitor and its potential application of composite metal framework organics in the field of metal corrosion protection.

Int J Biol Macromol

December 2024

Guangxi Colleges and Universities Key Laboratory of surface and interface electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guilin University of Technology, Guilin 541004, China. Electronic address:

With increasing awareness of environmental protection, additional attention has been given to environmentally friendly metal anticorrosion research. In this paper, the green organic corrosion inhibitor sodium lignosulfonate (SLS) was extracted from bagasse waste, and a Ce-MOF@SLS smart anticorrosive film containing the inhibitor was prepared on the surface of an aluminum alloy by in situ electrodeposition. The material was characterized by SEM, EDS, FT-IR, XRD and XPS, and its corrosion resistance was tested with EIS and neutral salt spray tests.

View Article and Find Full Text PDF

Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.

View Article and Find Full Text PDF

In-situ synthesis of FeS nanoparticles enhances Sulfamethoxazole degradation via accelerated electron transfer in anaerobic bacterial communities.

Water Res

December 2024

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China.

Article Synopsis
  • The study explores how in situ synthesized FeS nanoparticles (FeS NPs) can significantly enhance the degradation efficiency of the antibiotic SMX by anaerobic bacteria, increasing it from 25.80% to 47.60%.
  • The introduction of FeS NPs boosts intracellular degradation by 23.25 times and improves microbial interactions, allowing for more effective electron transfer between species like Petrimonas and Lysinibacillus.
  • Findings indicate enhanced electron transport activity (1.2 times higher), increased electron supply capacity (2.8 times), and notable changes in ionic transport capabilities, which could improve the treatment of antibiotic pollutants in wastewater.
View Article and Find Full Text PDF

Theoretical and Electrochemical Evaluation of Cannabis Sativa L. Extracts as Corrosion Inhibitors for Mild Steel in Acidic Medium.

ChemistryOpen

December 2024

Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, Kenitra, B.P 242, Morocco.

The corrosion of metals in acidic environments remains a significant challenge, driving the search for sustainable and eco-friendly inhibitors derived from natural sources. This study evaluates the corrosion inhibition potential of three extracts from Cannabis sativa L., namely ethanol extract (EET), hexane extract (EHX), and dichloromethane extract (EDM), for mild steel in a 1 M HCl acidic medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!