Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b04977 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Structural batteries offer a transformative approach to integrate energy storage directly into the frameworks of electric vehicles and aircrafts, enabling multifunctional construction. This study presents a nacre-inspired multilayer composite electrode fabricated via the cold sintering process (CSP), achieving a balance of enhanced electrochemical performance and mechanical robustness. The composite electrode combines active electrode materials with a ductile conducting polymer-carbon-mixture phase in a layered architecture.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
J Chem Theory Comput
January 2025
Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden.
Electrochemical energy storage and conversion play increasingly important roles in electrification and sustainable development across the globe. A key challenge therein is to understand, control, and design electrochemical energy materials with atomistic precision. This requires inputs from molecular modeling powered by machine learning (ML) techniques.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Qingdao Branch of Luoyang Ship Material Research Institute, 149-1, Zhuzhou Road, Laoshan District, Qingdao, Shandong, China; Sunrui Marine Environment Engineering Co., Ltd, Qingdao, Shandong, China.
Nowadays, performance studies on the amperometric total residual oxidant (TRO) sensor are only in the bench test stage and have not been conducted under specific maritime conditions with Ballast Water Management System (BWMS). In this study, the application of the amperometric TRO sensor in land-based biological efficacy (BE) testing, operation and maintenance (O&M) testing, as well as shipboard (SB) testing, was explored by comparing with the existing di-phenylene-diamine (DPD) TRO sensor. The results showed that the average TRO measurement deviation between the amperometric sensor and the DPD sensor was within ±10% in valid BE test cycles and the O&M testing exceeding 47 operating hours.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
Anode materials with high capacity and suitable redox potential are crucial for improving the energy density of aqueous sodium-ion batteries (ASIBs). And organic anode materials play a promising role due to their tunable electrochemical performance. However, the insufficient electroactive sites lead to a low capacity, hindering the elevation of energy density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!