Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.

Aquat Toxicol

Department of Biological Sciences, Idaho State University, MS 8007, Pocatello, ID 83209, United States. Electronic address:

Published: April 2017

Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δC) were measured among treatments ranging from 0 to 15000nmol/L-sucralose and 0-323nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ C of L. minor at environmentally relevant concentrations. The increase of δ C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor-a mixotrophic plant-can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly decreased L. minor root growth, daily growth rate, and asexual reproduction at 323nmol/L-fluoxetine; however, ambiguity remains regarding the mechanisms responsible and the applicability of these extreme concentrations unprecedented in the natural environment. To our knowledge, this was the first study to show aquatic plants can uptake and metabolize sucralose as a carbon source. This study further supports the common notion that L. minor can be useful in bioremediation of PPCP from wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2017.01.008DOI Listing

Publication Analysis

Top Keywords

green leaf
12
leaf area
12
photosynthetic capacity
12
sucralose
11
ecotoxicological assessments
8
sucralose fluoxetine
8
aquatic plant
8
lemna minor
8
aquatic plants
8
growth rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!