Higher Expression of Toll-like Receptors 3, 7, 8, and 9 in Pityriasis Rosea.

J Pathol Transl Med

Department of Molecular Genetics, National Research Center (NRC), Cairo University, Cairo, Egypt.

Published: March 2017

Background: Pityriasis rosea (PR) is a common papulosquamous skin disease in which an infective agent may be implicated. Toll-like receptors (TLRs) play an important role in immune responses and in the pathophysiology of inflammatory skin diseases. Our aim was to determine the possible roles of TLRs 3, 7, 8, and 9 in the pathogenesis of PR.

Methods: Twenty-four PR patients and 24 healthy individuals (as controls) were included in this case control study. All recruits were subjected to routine laboratory investigations. Biopsies were obtained from one active PR lesion and from healthy skin of controls for the detection of TLR 3, 7, 8, and 9 gene expression using real-time polymerase chain reaction.

Results: This study included 24 patients (8 females and 16 males) with active PR lesions, with a mean age of 28.62 years. Twenty four healthy age- and sex-matched individuals were included as controls (8 females and 16 males, with a mean age of 30.83 years). The results of the routine laboratory tests revealed no significant differences between both groups. Significantly elevated expression of all studied TLRs were detected in PR patients relative to healthy controls (p < .001).

Conclusions: TLRs 3, 7, 8, and 9 might be involved in the pathogenesis of PR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357755PMC
http://dx.doi.org/10.4132/jptm.2016.09.09DOI Listing

Publication Analysis

Top Keywords

toll-like receptors
8
pityriasis rosea
8
routine laboratory
8
females males
8
higher expression
4
expression toll-like
4
receptors pityriasis
4
rosea background
4
background pityriasis
4
rosea common
4

Similar Publications

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

High molecular weight hyaluronan (HMWH) inhibits hyperalgesia induced by diverse pronociceptive inflammatory mediators and their second messengers, in rats of both sexes. However, the hyperalgesia induced by ligands at 3 pattern recognition receptors, lipopolysaccharide (a toll-like receptor 4 agonist), lipoteichoic acid (a toll-like receptor 2/6 agonist), and nigericin (a NOD-like receptor family, pyrin domain containing 3 activator), and oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy are only attenuated in males. After gonadectomy or intrathecal administration of an antisense to G-protein-coupled estrogen receptor 30 (GPER) mRNA, HMWH produces antihyperalgesia in females.

View Article and Find Full Text PDF

Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!