Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.13659DOI Listing

Publication Analysis

Top Keywords

nitrate decline
4
decline triggered
4
triggered release
4
release dissolved
4
dissolved organic
4
organic carbon
4
carbon phosphate
4
phosphate streams
4
nitrate
1
triggered
1

Similar Publications

Groundwater is often used directly by the public in several river basins of India. Hence, this study was carried out with the objective of assessing the quality of groundwater in the Amaravathi basin, India, using a multiple indices approach. Groundwater quality data from 96 monitoring wells were obtained from the Central Groundwater Board and used in this study.

View Article and Find Full Text PDF

Nitrogen source type modulates heat stress response in coral symbiont ().

Appl Environ Microbiol

January 2025

Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.

Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).

View Article and Find Full Text PDF

Variations in the Bacterial, Fungal, and Protist Communities and Their Interactions Within Sediment Affected by the Benthic Organism, Snail .

Microorganisms

December 2024

Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

In aquatic benthic environments, benthic organisms have been found to regulate important biogeochemical characteristics and perform key ecosystem functions. To further explore the ecological impact of the snail 's, presence on the benthic environment, we employed high-throughput sequencing technology to investigate its effects on the bacterial, fungal, and protist communities in sediment and their intrinsic interactions. Our findings revealed that 's presence significantly enhanced the diversity and evenness of the fungal community while simultaneously decreasing the diversity and richness of the protist community, and it also altered the composition and relative abundance of the dominant phyla across the bacterial, fungal, and protist communities.

View Article and Find Full Text PDF

Investigation and modeling of land use effects on water quality in two NYC water supply streams.

J Environ Manage

January 2025

71 Smith Ave., Bureau of Water Supply, New York City Department of Environmental Protection, Kingston, NY, 12401, USA.

The paired watershed monitoring approach is widely used to investigate hydrologic processes and water quality, providing streamflow and water quality records for long-term trend analysis, as well as data for developing and testing hydrologic models. In this study we use 20 years of streamflow and water quality data, along with a watershed model, to examine sources of stream nutrients and their changes over time in two small streams within the New York City water supply system. We compare sources and trends in stream nitrate and dissolved phosphorus in the urbanized Amawalk watershed with those of the predominantly forested Boyd Corners watershed in the Croton system of reservoirs.

View Article and Find Full Text PDF

Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!