Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully applied to accurately derive molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it may be useful in the study of a wide variety of biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330533PMC
http://dx.doi.org/10.1371/journal.pcbi.1005376DOI Listing

Publication Analysis

Top Keywords

molecular kinetic
24
kinetic scheme
16
kinetic schemes
8
macroscopic traces
8
transfer function
8
correct molecular
8
kinetic
6
molecular
6
sysmole
5
elucidation molecular
4

Similar Publications

Diabetes affects approximately 422 million people worldwide, leading to 1.5 million deaths annually and causing severe complications such as kidney failure, neuropathy, and cardiovascular disease. Aldose reductase (AR), a key enzyme in the polyol pathway, is an important therapeutic target for managing these complications.

View Article and Find Full Text PDF

Optimizing voriconazole-loaded thermoresponsive hydrogel: tools and studies.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.

Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.

Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.

View Article and Find Full Text PDF

Design Principles From Natural Olfaction for Electronic Noses.

Adv Sci (Weinh)

January 2025

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Natural olfactory systems possess remarkable sensitivity and precision beyond what is currently achievable by engineered gas sensors. Unlike their artificial counterparts, noses are capable of distinguishing scents associated with mixtures of volatile molecules in complex, typically fluctuating environments and can adapt to changes. This perspective examines the multifaceted biological principles that provide olfactory systems their discriminatory prowess, and how these ideas can be ported to the design of electronic noses for substantial improvements in performance across metrics such as sensitivity and ability to speciate chemical mixtures.

View Article and Find Full Text PDF

A comprehensive approach enabling a quantitative interpretation of poly-l-arginine (PARG) adsorption kinetics at solid/electrolyte interfaces was developed. The first step involved all-atom molecular dynamics (MD) modeling of physicochemical characteristics yielding PARG molecule conformations, its contour length, and the cross-section area. It was also shown that PARG molecules, even in concentrated electrolyte solutions (100 mM NaCl), assume a largely elongated shape with an aspect ratio of 36.

View Article and Find Full Text PDF

Three seco-norabietane diterpenoids, salvicsites A-C (-), along with two known compounds, were isolated from the roots and rhizomes of Diels f. Stib. Salvicsite A () represents an unprecedented structural combination, featuring an eight-membered α-methyl-α,β-unsaturated lactone ring and a five-membered α,β-unsaturated lactone ring, based on a 6/6/5/8 ring system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!