Compensatory Saccades Are Associated With Physical Performance in Older Adults: Data From the Baltimore Longitudinal Study of Aging.

Otol Neurotol

*Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine†Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland.

Published: March 2017

Objective: To determine whether compensatory saccade metrics observed in the video head impulse test, specifically saccade amplitude and latency, predict physical performance.

Study Design: Cross-sectional analysis of the Baltimore Longitudinal Study of Aging, a prospective cohort study.

Setting: National Institute on Aging Intramural Research Program Clinical Research Unit in Baltimore, Maryland.

Patients: Community-dwelling older adults.

Intervention(s): Video head impulse testing was performed, and compensatory saccades and horizontal vestibulo-ocular reflex (VOR) gain were measured. Physical performance was assessed using the Short Physical Performance Battery (SPPB), which included the feet side-by-side, semitandem, tandem, and single-leg stance; repeated chair stands; and usual gait speed measurements.

Main Outcome Measure(s): Compensatory saccade amplitude and latency, VOR gain, and SPPB performance.

Results: In 183 participants who underwent vestibular and SPPB testing (mean age 71.8 yr; 53% females), both higher mean saccade amplitude (odds ratio [OR] =1.62, p = 0.010) and shorter mean saccade latency (OR = 0.88, p = 0.004) were associated with a higher odds of failing the tandem stand task. In contrast, VOR gain was not associated with any physical performance measure.

Conclusion: We observed in a cohort of healthy older adults that compensatory saccade amplitude and latency were associated with tandem stance performance. Compensatory saccade metrics may provide insights into capturing the impact of vestibular loss on physical function in older adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5308452PMC
http://dx.doi.org/10.1097/MAO.0000000000001301DOI Listing

Publication Analysis

Top Keywords

physical performance
16
compensatory saccade
16
saccade amplitude
16
older adults
12
amplitude latency
12
vor gain
12
compensatory saccades
8
associated physical
8
baltimore longitudinal
8
longitudinal study
8

Similar Publications

Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking.

J Chem Theory Comput

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.

View Article and Find Full Text PDF

Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.

View Article and Find Full Text PDF

Early identification of dropouts during the special forces selection program.

Sci Rep

January 2025

Department of Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712TS, Groningen, The Netherlands.

Recruits are exposed to high levels of psychological and physical stress during the special forces selection period, resulting in dropout rates of up to 80%. To identify who likely drops out, we assessed a group of 249 recruits, every week of the selection program, on their self-efficacy, motivation, experienced psychological and physical stress, and recovery. Using linear regression as well as state-of-the-art machine learning techniques, we aimed to build a model that could meaningfully predict dropout while remaining interpretable.

View Article and Find Full Text PDF

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

Nat Commun

January 2025

Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!