This study focuses on the effectiveness of zeolite (10% CF-Z [0.5]) hydrothermally synthesized from waste quartz sand and calcium fluoride (CF) for ammonium ion and heavy metal removal. Zeolite was characterized through powder X-ray diffraction, Fourier-transform infrared spectroscopy, micromeritics N adsorption/desorption analysis, and field emission scanning electron microscopy. The effects of CF addition, Si/Al ratio, initial ammonium concentration, solution pH, and temperature on the adsorption of ammonium on 10% CF-Z (0.5) were further examined. Results showed that 10% CF-Z (0.5) was a single-phase zeolite A with cubic-shaped crystals and 10% CF-Z (0.5) efficiently adsorbs ammonium and heavy metals. For instance, 91% ammonium (10 mg L) and 93% lead (10 mg L) are removed. The adsorption isotherm, kinetics, and thermodynamics of ammonium adsorption on 10% CF-Z (0.5) were also theoretically analyzed. The adsorption isotherm of ammonium and lead on 10% CF-Z (0.5) in single systems indicated that Freundlich model provides the best fit for the equilibrium data, whereas pseudo-second-order model best describes the adsorption kinetics. The adsorption degree of ions on 10% CF-Z (0.5) in mixed systems exhibits the following pattern: lead > ammonium > cadmium > chromium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2016.508 | DOI Listing |
Water Sci Technol
February 2017
Department of Environmental Engineering, National I-Lan University, Ilan, Taiwan.
This study focuses on the effectiveness of zeolite (10% CF-Z [0.5]) hydrothermally synthesized from waste quartz sand and calcium fluoride (CF) for ammonium ion and heavy metal removal. Zeolite was characterized through powder X-ray diffraction, Fourier-transform infrared spectroscopy, micromeritics N adsorption/desorption analysis, and field emission scanning electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!