The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photo-neutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in γ/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aa5bc9DOI Listing

Publication Analysis

Top Keywords

fast thermal
12
thermal neutron
8
real-time detection
4
fast
4
detection fast
4
thermal neutrons
4
neutrons radiotherapy
4
radiotherapy cmos
4
cmos sensors
4
sensors peripheral
4

Similar Publications

Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel.

Anal Chim Acta

January 2025

Key Laboratory of High Performance Manufacturing for Aero Engine (MIIT), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China. Electronic address:

Background: Fast and accurate classification of steel can effectively improve industrial production efficiency. In recent years, the use of laser-induced breakdown spectroscopy (LIBS) in conjunction with other techniques for material classification has been developing. Plasma Acoustic Emission Signal (PAES) is a type of modal information separate from spectra that is detected using LIBS, and it can reflect some of the sample's physicochemical information.

View Article and Find Full Text PDF

Air-stable single-molecule magnets (SMMs) can be obtained by confining Dy ion in a coordination environment; however, most of the current efforts were focused on modifying the rigidity of the macrocycle ligand. Herein, we attempt to assemble air-stable SMMs based on macrocycles with a replaceable coordination site. By using an in situ 1 + 1 Schiff-base reaction of dialdehyde with diamine, three air-stable SMMs have been obtained in which one of the equatorial coordination sites can be varied from -NH- (for ), -O- (for ), and -NMe- (for ).

View Article and Find Full Text PDF

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials have great potential for applications in ultrahigh-definition (UHD) organic light-emitting diode (OLED) displays, that benefit from their narrowband emission characteristic. However, key challenges such as aggregation-caused quenching (ACQ) effect and slow triplet-to-singlet spin-flip process, especially for blue MR-TADF materials, continue to impede their development due to planar skeletons and relatively large ΔESTs. Here, an effective strategy that incorporates multiple carbazole donors into the parent MR moieties is proposed, synergistically engineering their excited states and steric hindrances to enhance both the spin-flip process and quenching resistance.

View Article and Find Full Text PDF

Pakistani lignite (PLC) was thermally dissolved at 300 °C using isopropanol (IPA) to obtain a soluble portion (SP) and insoluble portion (ISP). Proximate analysis, ultimate analysis, Fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TG-DTG) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) results were compared to explore the influence of the thermal dissolution process on the pyrolysis for PLC and ISP. Results showed that the thermal dissolution process mainly dissolved some light components of low-rank coal, and more phenols, aldehydes, esters and ethers were found in the SP, indicating that low-carbon alcohols can break the ether bridge bond in coal and generate oxygen-containing organic compounds (OCOCs).

View Article and Find Full Text PDF

Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!