The circadian clock is crucial for sustaining rhythmic biochemical, physiological, and behavioral processes in living creatures. In this study, we isolated and characterized two circadian clock genes in Macrobrachium nipponense, period (Mnper) and timeless (Mntim). The complete Mnper cDNA measures 4283bp in length with an open reading frame encoding 1292 amino acids, including functional domains such as PER-ARNT-SIM (PAS), cytoplasmic localization domain (CLD), TIM interaction site (TIS), and nuclear localization signal (NLS). The deduced Mntim protein comprises1540 amino acids with functional domains such as PER interaction site (PIS), NLS, and CLD. Tissue distribution analyses showed that the two genes were highly expressed in the eyestalk and brain in both males and females, as well as being expressed in the ovary. The expression profiles of Mnper and Mntim were determined in the eyestalk, brain, and ovary under simulated breeding season and non-breeding season conditions. The expression profiles of both Mnper and Mntim appeared to be unaffected in the eyestalk. However, the expression of both genes exhibited significant seasonal variations in the brain, and thus we assumed the brain to be their functional location. The expression profiles under different simulated seasons and the variations during different ovarian stages indicate that both genes might be involved with female reproduction. Especially the mRNA levels in the brain varied greatly during these stages indicating that the clock function in the brain is closely related to ovarian development and female reproduction. And the reproductive roles of clock genes need to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2017.02.011 | DOI Listing |
Commun Biol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Meniere's disease (MD) is an inner ear disease characterized by endolymphatic hydrops (EH). Maintaining a regular daily routine is crucial for MD patients. However, the relationship between circadian rhythms and MD remains unclear.
View Article and Find Full Text PDFPLoS Genet
January 2025
School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China.
Purpose: This study investigated the impact of hyperglycemia in type 2 diabetes mellitus (T2DM) on the circadian rhythms and function of lacrimal glands (LGs) in contributing to dry eye syndrome. We assessed the effects of hyperglycemia on circadian gene expression, immune cell recruitment, neural activity, and metabolic pathways, and evaluated the effectiveness of insulin in restoring normal LG function.
Methods: Using a T2DM mouse model (db/db mice), circadian transcriptomic changes in LGs were analyzed through RNA sequencing over a 24-hour period.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!