The versatility of Hsp90 can be attributed to the variety of co-chaperone proteins that modulate the role of Hsp90 in many cellular processes. As a co-chaperone of Hsp90, Cpr7 is essential for accelerating the cell growth in an Hsp90-containing trimeric complex. Here, we report the crystal structure of Cpr7 at a resolution of 1.8Å. It consists of an N-terminal PPI domain and a C-terminal TPR domain, and exhibits a U-shape conformation. Our studies revealed the aggregation state of Cpr7 in solution and the interaction properties between Cpr7 and the MEEVD sequence from the C-terminus of Hsp90. In addition, the structure and sequence analysis between Cpr7 and homologues revealed the structure basis both for the function differences between Cpr6 and Cpr7 and the functional complements between Cns1 and Cpr7. Our studies facilitate the understanding of Cpr7 and provide decent insights into the molecular mechanisms of the Hsp90 co-chaperone pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2017.02.002 | DOI Listing |
PLoS Genet
December 2024
Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.
Protein homeostasis relies on the accurate translation and folding of newly synthesized proteins. Eukaryotic elongation factor 2 (eEF2) promotes GTP-dependent translocation of the ribosome during translation. eEF2 folding was recently shown to be dependent on Hsp90 as well as the cochaperones Hgh1, Cns1, and Cpr7.
View Article and Find Full Text PDFJ Virol
June 2022
Department of Plant Pathology, University of Kentuckygrid.266539.d, Lexington, Kentucky, USA.
Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as "trafficking highways" to deliver proviral host factors into the protective VROs.
View Article and Find Full Text PDFDecoding of OAZ1 (Ornithine decarboxylase AntiZyme 1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation.
View Article and Find Full Text PDFJ Mol Biol
July 2020
Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr, Room 324, Bethesda, MD 20892, USA. Electronic address:
Hsp90 is a highly conserved molecular chaperone important for the activity of many client proteins. Hsp90 has an N-terminal ATPase domain (N), a middle domain (M) that interacts with clients and a C-terminal dimerization domain (C). "Closing" of dimers around clients is regulated by ATP binding, co-chaperones, and post-translational modifications.
View Article and Find Full Text PDFMol Cell
April 2019
Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany. Electronic address:
The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!