The vascular endothelial growth factor (VEGF)-mediated enhancement in vascular permeability is considered to be a major factor in tumor-targeting delivery via the enhanced permeability and retention (EPR) effect. We previously reported that the silencing of the endothelial VEGF receptor (VEGFR2) by a liposomal siRNA system (RGD-MEND) resulted in an enhanced intratumoral distribution of polyethylene glycol (PEG)-modified liposomes (LPs) in a renal cell carcinoma, a type of hypervascularized cancer, although the inhibition of VEGF signaling would be expected to decrease the permeability of the tumor vasculature. We herein report that the enhancement in the intratumoral distribution of LPs by VEGFR2 inhibition was dependent on the vascular type of the tumor (stroma vessel type; SV and tumor vessel type; TV). In the case of TV-type tumors (renal cell carcinoma and hepatocellular carcinoma), inhibiting VEGFR2 improved intratumoral distribution, while no effect was found in the case of SV-type tumors (colorectal cancer). Moreover, through a comparison of the intratumoral distribution of LPs with a variety of physical properties (100nm vs 400nm, neutral vs negative vs positive), VEGFR2 inhibition was found to alter the tumor microenvironment, including heparan sulfate proteoglycans (HSPGs). In addition, the results regarding the effect of the size of nanoparticles indicated that VEGFR2 inhibition improved the penetration of nanoparticles through the vessel wall, but not via permeability, suggesting the involvement of an unknown mechanism. Our findings suggest that a combination of anti-angiogenic therapy and delivery via the EPR effect would be useful in certain cases, and that altering the tumor microenvironment by VEGFR2 blockade has a drastic effect on the intratumoral distribution of nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2017.02.010DOI Listing

Publication Analysis

Top Keywords

intratumoral distribution
24
vegfr2 inhibition
12
renal cell
8
cell carcinoma
8
distribution lps
8
type tumor
8
vessel type
8
tumor microenvironment
8
vegfr2
7
intratumoral
6

Similar Publications

Background: The increased use of low-dose computed tomography (CT) for lung cancer screening has improved the detection of ground-glass nodules. However, as the clinical utility of CT findings to predict the invasiveness of pure ground-glass nodules (pGGNs) is currently limited, differentiating pGGNs that indicate invasive adenocarcinoma (IAC) from those that represent other histological entities is challenging. We aimed to quantify intratumor heterogeneity of lung adenocarcinomas characterized by pGGNs on CT to assess its efficacy in predicting IACs before surgery.

View Article and Find Full Text PDF

Pancreatic cancer therapies such as chemotherapy and immunotherapy are hindered by the dense extracellular matrix known as physical barriers, leading to heterogeneity impeding the effective penetration of chemotherapeutic agents and activation of antitumor immune responses. To address this challenge, we developed a hybrid nanoassembly with a distinct core-satellite-like heterostructure, PLAF@P/T-PD, which is responsive to both internal pH/redox and external ultrasound stimulations. This heterostructural nanoassembly features a polymersome core encapsulating an ultrasound contrast agent perfluoropentane and a chemotherapeutic agent Taxol (PLAF@P/T) electrostatically coated with satellite-like polyplexes carrying an immune agonist dsDNA (PD), which brings about synergistic functions inside the pancreatic tumor.

View Article and Find Full Text PDF

Objective: The aim of this study was to understand the interactions between tumor-associated mesenchymal stem cells (TA-MSCs) and triple-negative breast cancer (TNBC) cells, which appear to be necessary for developing effective therapies.

Materials And Methods: In this experimental study, MDA-MB-231 and 4T1 TNBC cells were co-cultured with bone marrow-derived MSCs, and TA-MSCs conditioned media (CM) were collected. TA-MSC CM-treated TNBC cells were subjected to migration and invasion assays.

View Article and Find Full Text PDF

Purpose: Adavosertib is an oral small molecular inhibitor of Wee1. The Adult Brain Tumor Consortium performed a phase I study of adavosertib, radiation (RT) and temozolomide (TMZ) in newly diagnosed glioblastoma (GBM) as well as a surgical window of opportunity study in recurrent GBM.

Patients And Methods: The maximum tolerated dose (MTD) of adavosertib was determined in adult patients with newly diagnosed GBM using a standard 3+3 design in 2 separate cohorts: with concurrent RT/TMZ or with adjuvant TMZ.

View Article and Find Full Text PDF

The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!