We investigated the intercalation of C into poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymers layers by density functional theory calculations in respect of crystal structures and electronic band structures. Based on the experimental observations, we found that the copolymer with branched side chains substituted next to the anthracene units and the linear side chains substituted to the vinylene units has a better tendency to intercalate with C than the reversely substituted copolymer. The calculated electronic band structures of the intercalated phase, featured by flat in-gap states resulting from C molecules, explain the experimentally observed variations of the photocurrent, photoluminescence, and electroluminescence yields with different ratio between PCBM and the two types of copolymers in the ternary blend.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.6b12106 | DOI Listing |
Int Urol Nephrol
January 2025
Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Introduction: Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD), enhancing survival and quality of life. However, kidney transplant recipients (KTRs) are at high risk for bone disorders, particularly low bone turnover disease, which increases fracture risk. Teriparatide, an anabolic agent, may provide a beneficial treatment option for these patients.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.
View Article and Find Full Text PDFSci Rep
January 2025
Johnson & Johnson, Therapeutics Discovery, Spring House, PA, USA.
Solution-based affinity assays are used for the selection and characterization of proteins that could be developed into therapeutic molecules. However, these assays have limitations for cell-surface proteins as in most cases their purification requires detergent solubilization and are unlikely to assume conformations in solution that resemble their native states in cell membranes. This report describes a novel electrochemiluminescence-based method, called MSD-CAT, for the affinity analysis of antibodies binding to cell-surface receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!