A valuable resource available in the search for new natural products is the diverse microbial life that spans the planet. A large subset of these microorganisms synthesize complex specialized metabolites exhibiting biomedically important activities. A limiting step to the characterization of these compounds is an elucidation of the genetic regulatory mechanisms that oversee their production. Although proteins that control transcription initiation of specialized metabolite gene clusters have been identified, those affecting transcription elongation have not been broadly investigated. In this study, we analysed the phylogenetic distribution of the large, widespread NusG family of transcription elongation proteins and found that it includes a cohesive outgroup of paralogues (herein coined LoaP), which are often positioned adjacent or within gene clusters for specialized metabolites. We established Bacillus amyloliquefaciens LoaP as a paradigm for this protein subgroup and showed that it regulated the transcriptional readthrough of termination sites located within two different antibiotic biosynthesis operons. Both of these antibiotics have been implicated in plant-protective activities, demonstrating that LoaP controls an important regulon of specialized metabolite genes for this microorganism. These data therefore reveal transcription elongation as a point of regulatory control for specialized metabolite pathways and introduce a subgroup of NusG proteins for this purpose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913657 | PMC |
http://dx.doi.org/10.1038/nmicrobiol.2017.3 | DOI Listing |
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary.
In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.
View Article and Find Full Text PDFNat Commun
January 2025
Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.
Individual enhancers are defined as short genomic regulatory elements, bound by transcription factors, and able to activate cell-specific gene expression at a distance, in an orientation-independent manner. Within mammalian genomes, enhancer-like elements may be found individually or within clusters referred to as locus control regions or super-enhancers (SEs). While these behave similarly to individual enhancers with respect to cell specificity, distribution and distance, their orientation-dependence has not been formally tested.
View Article and Find Full Text PDFRegulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).
View Article and Find Full Text PDFCancer Lett
January 2025
. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!