Purpose: This review aims to explore and summarize the current clinical evidence about the use of regenerative medicine such as mesenchymal stem cells or platelet-rich plasma in intervertebral disc regeneration, in order to clarify the state of art of these novel approaches.
Materials And Methods: We performed a research of the available literature about regenerative medicine strategies aiming to prevent intervertebral disc degeneration. All preclinical trials and in vitro studies were excluded. Only clinical trials were critically analysed.
Results: The manuscript selection produced a total of 7 articles concerning the use of regenerative therapies in intervertebral disc degeneration, covering the period between 2010 and 2016. Articles selected were 4 about the injection of mesenchymal stem cells-related results and 3 using platelet-rich plasma. The total population of patients treated with regenerative medicine strategies were 104 patients.
Conclusions: Regenerative medicine, such as the use of mesenchymal stem cells or platelet-rich plasma, in intradiscal disc degeneration has shown preclinical and clinical positive results. Randomized clinical trials studying the potential of MSCs intradiscal injection have not been conducted, and PRP effect has been studied only preliminarily. Additional more powered high-quality studies are needed to really appreciate the long-term safety and efficacy of regenerative medicine approaches in IDD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12306-017-0462-3 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFTheranostics
January 2025
Department of biochemistry and molecular biology, College of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.
View Article and Find Full Text PDFBioact Mater
April 2025
Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
Biodegradable magnesium (Mg) implant generally provides temporary fracture fixation and facilitates bone regeneration. However, the exact effects of generated Mg ions (Mg), hydrogen gas (H), and hydroxide ions (OH) by Mg degradation on enhancing fracture healing are not fully understood. Here we investigate the degradation of Mg intramedullary nail (Mg-IMN), revealing the generation of these degradation products around the fracture site during early stages.
View Article and Find Full Text PDFFront Antibiot
April 2024
Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy.
RSC Adv
January 2025
School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China
Bone defects represent a significant challenge in clinical practice, driving the need for innovative solutions that effectively support bone regeneration. Barrier membranes, due to playing a critical role in creating an environment conducive to bone regeneration by preventing the infiltration of non-osteogenic tissues, are widely applied to bone repair. However, inadequate spatial stability and osteogenesis-promoting ability often limit current barrier membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!