This bibliometric analysis focuses on the general history of climate change research and, more specifically, on the discovery of the greenhouse effect. First, the Reference Publication Year Spectroscopy (RPYS) is applied to a large publication set on climate change of 222,060 papers published between 1980 and 2014. The references cited therein were extracted and analyzed with regard to publications, which are cited most frequently. Second, a new method for establishing a more subject-specific publication set for applying RPYS (based on the co-citations of a marker reference) is proposed (RPYS-CO). The RPYS of the climate change literature focuses on the history of climate change research in total. We identified 35 highly-cited publications across all disciplines, which include fundamental early scientific works of the nineteenth century (with a weak connection to climate change) and some cornerstones of science with a stronger connection to climate change. By using the Arrhenius (Philos Mag J Sci Ser 5(41):237-276, 1896) paper as a RPYS-CO marker paper, we selected only publications specifically discussing the discovery of the greenhouse effect and the role of carbon dioxide. Using different RPYS approaches in this study, we were able to identify the complete range of works of the celebrated icons as well as many less known works relevant for the history of climate change research. The analyses confirmed the potential of the RPYS method for historical studies: Seminal papers are detected on the basis of the references cited by the overall community without any further assumptions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266778 | PMC |
http://dx.doi.org/10.1007/s11192-016-2177-x | DOI Listing |
Integr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFAmbio
January 2025
Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
Curr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.
The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Institute of Biochemical Engineering/Institut für Bioverfahrenstechnik, University of Stuttgart, Stuttgart, Germany.
While rising greenhouse gases cause climate change, global economies ask for resilient solutions for the business of the future. Biomanufacturing may well serve as a pillar of a circular economy with minimised environmental impact. Therefore, innovations of the lab need to successfully bridge the imminent 'death-valley of innovation' for making commercial production happen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!