Human cytochrome P450 11B2 (CYP11B2) is an essential enzyme in the steroid hormone biosynthesis, which catalyzes the last three reaction steps of the aldosterone synthesis. These reactions comprise a hydroxylation at position C11 of the steroid intermediate deoxycorticosterone yielding corticosterone, followed by a hydroxylation at position C18 yielding 18-hydroxy-corticosterone and a subsequent oxidation of the hydroxyl group at C18, which results in the formation of aldosterone. Alterations in the amino acid sequence of CYP11B2 often cause severe disease patterns. We previously described a procedure for expression and purification of human CYP11B2 employing recombinant E. coli, which allows the rapid characterization of CYP11B2 mutants on a molecular level. This system was now utilized for the examination of the influence of the polymorphism at position 173 in combination with the mutation V386A on the activity of CYP11B2. Our in vitro findings show that the combination of the V386A mutation with the variant CYP11B2 173 only slightly reduces the 18-hydroxylase and 18-oxidase activity, whereas the V386A mutation with the CYP11B2 173 variant almost abolishes the 18-hydroxylation and 18-oxidation. In both cases the 11-hydroxylase activity is not affected. These findings highlight the importance of the genetic background of an enzyme when regarding the effect of clinical mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1507/endocrj.EJ16-0417DOI Listing

Publication Analysis

Top Keywords

cyp11b2
8
mutation v386a
8
genetic background
8
hydroxylation position
8
v386a mutation
8
cyp11b2 173
8
impact clinical
4
clinical cyp11b2
4
mutation
4
cyp11b2 mutation
4

Similar Publications

Irbesartan improves ventricular remodeling (VR) following myocardial infarction (MI). This study investigates whether irbesartan attenuates VR by reducing aldosterone production in the heart and its underlying mechanisms. MI was induced in male Sprague-Dawley rats through coronary artery ligation.

View Article and Find Full Text PDF

Hypertension remains a global health challenge due to its high prevalence and association with premature morbidity and mortality. Aldosterone, a mineralocorticoid hormone, and its receptor, the mineralocorticoid receptor (MR), are highly implicated in hypertension pathogenesis. Aldosterone synthase is the sole enzyme responsible for producing aldosterone in humans.

View Article and Find Full Text PDF

Aldosterone-producing adenoma (APA) is a leading cause of primary aldosteronism (PA), a condition marked by excessive aldosterone secretion. CYP11B2, the aldosterone synthase, plays a critical role in aldosterone biosynthesis and the development of APA. Despite its significance, encoding regulatory mechanisms governing CYP11B2, particularly its degradation, remain poorly understood.

View Article and Find Full Text PDF

Objective: Aldosterone synthase deficiency (ASD) is a rare autosomal recessive inherited disease with an overall clinical phenotype of failure to thrive, vomiting, severe dehydration, hyperkalemia, and hyponatremia. Mutations in the CYP11B2 gene encoding AS are responsible for the occurrence of ASD. Defects in CYP11B2 gene have only been reported in a limited number of cases worldwide.

View Article and Find Full Text PDF

Aldosterone synthase inhibitors: a potential revival for treatment of renal and cardiovascular diseases.

J Clin Endocrinol Metab

December 2024

Université Paris Cité, INSERM CIC1418, 75015 Paris, France; Hypertension Department, AP-HP, Hôpital, Georges-Pompidou, 75015 Paris, France.

Inappropriate aldosterone excess plays a key role in the pathophysiology of various cardiovascular, endocrine and renal diseases. Mineralocorticoid receptor (MR) antagonists (MRAs) such as spironolactone block of the harmful effects of aldosterone and are recommended treatment in these various conditions. However, the sexual adverse effects of spironolactone due to its lack of specificity for the MR and the risk of hyperkalemia in patients with decreased renal function, limit its use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!