Correlation between the cellular metabolism of quercetin and its glucuronide metabolite and oxidative stress in hypertrophied 3T3-L1 adipocytes.

Phytomedicine

Institute of Molecular and Cell Biology (IMCB), Miguel Hernández University (UMH), Elche 03202, Alicante, Spain; CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain. Electronic address:

Published: February 2017

Background: Quercetin (Q) is one of the most abundant flavonoids in human dietary sources and has been related to the capacity to ameliorate obesity-related pathologies. Quercetin-3-O-β-d-glucuronide (Q3GA) is supposed to be the main metabolite in blood circulation, but the intracellular final effectors for its activity are still unknown.

Hypothesis/purpose: To identify and quantitate the intracellular metabolites in hypertrophied adipocytes incubated with Q or Q3GA and to correlate them with the intracellular generation of oxygen radical species (ROS).

Methods: Cytoplasmic fractions were obtained and quercetin metabolites were determined by liquid chromatography coupled to a time-of-flight mass detector with electrospray ionization (HPLC-DAD-ESI-TOF). Intracellular ROS generation was measured by a ROS-sensitive fluorescent probe.

Results: Both Q and Q3GA were absorbed by hypertrophied adipocytes and metabolized to some extent to Q3GA and Q, respectively, but Q absorption was more efficient (1.92 ± 0.03µg/µg protein) and faster than that of Q3GA (0.12 ± 0.0015µg/µg protein), leading to a higher intracellular concentration of the aglycone. Intracellular decrease of ROS correlated with the presence of the most abundant quercetin metabolite.

Conclusion: Q and Q3GA are efficiently absorbed by hypertrophied adipocytes and metabolized to some extent to Q3GA and Q, respectively. The intracellular decrease of ROS in a hypertrophied adipocyte model treated with Q or Q3GA is correlated with the most abundant intracellular metabolite for the first time. Both compounds might be able to reach other intracellular targets, thus contributing to their bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2016.12.008DOI Listing

Publication Analysis

Top Keywords

hypertrophied adipocytes
12
intracellular
9
q3ga
8
absorbed hypertrophied
8
adipocytes metabolized
8
metabolized extent
8
extent q3ga
8
intracellular decrease
8
decrease ros
8
hypertrophied
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!