Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer-associated death in the next decade or so. It is widely accepted that tumorigenesis is linked to specific alterations in key genes and pancreatic neoplasms are some of the best characterized at the genomic level. Recent whole-exome and whole-genome sequencing analyses confirmed that PDAC is frequently characterized by mutations in a set of four genes among others: KRAS, TP53, CDKN2A/p16, and SMAD4. Sequencing, for example, is the preferable technique available for detecting KRAS mutations, whereas in situ immunochemistry is the main approach for detecting TP53 gene alteration. Nevertheless, the diagnosis of PDAC is still a clinical challenge, involving adequate acquisition of endoscopic ultrasound (EUS)-guided fine-needle aspiration (FNA) and specific pathological assessment from tissue architecture to specific biomolecular tests. The aim of the present review is to provide a complete overview of the current knowledge of the biology of pancreatic cancer as detected by the latest biomolecular techniques and, moreover, to propose a paradigm for strict teamwork collaboration in order to improve the correct use of diagnostic sources.

Download full-text PDF

Source
http://dx.doi.org/10.1111/den.12845DOI Listing

Publication Analysis

Top Keywords

team work
4
work cytopathology
4
cytopathology molecular
4
molecular diagnosis
4
diagnosis solid
4
pancreatic
4
solid pancreatic
4
pancreatic lesions
4
lesions pancreatic
4
pancreatic ductal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!