Aldo/keto reductases (AKRs) constitute a multitasking protein family that catalyzes diverse metabolic transformations including detoxification of stress generated reactive aldehydes. Yet this important protein family is poorly understood particularly in cyanobacteria, the ecologically most diverse and significant group of micro-organisms. Present study is an attempt to characterize all putative AKRs of Anabaena sp. PCC 7120. In silico analysis, it revealed the presence of at least four putative AKRs in Anabaena PCC7120 genome. All four proteins share less than 40% sequence identity with each other and also with the identified members of AKR superfamily and hence deserve to be assigned in new families. Dissimilarity in sequences is also reflected through their substrate specificity. While reduction of trans-2-nonenal, a LPO-derived reactive aldehyde was common across the four proteins, these proteins were found to be activated during heat, salt, Cd, As, and butachlor treatments, and their ectopic expression in Escherichia coli conferred tolerance to the above abiotic stresses. These findings affirm the role of AKRs in providing a broad tolerance to environmental stresses conceivably by detoxifying the stress-generated reactive aldehydes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-017-0547-yDOI Listing

Publication Analysis

Top Keywords

aldo/keto reductases
8
anabaena pcc
8
pcc 7120
8
protein family
8
reactive aldehydes
8
putative akrs
8
akrs anabaena
8
identification functional
4
functional characterization
4
characterization novel
4

Similar Publications

Sinonasal inverted papilloma (SNIP) is characterized by a high recurrence rate and potential for malignant transformation. Although metabolic reprogramming plays a role in benign neoplasms, the specific metabolic pathways and biomarkers involved in SNIP pathogenesis remain unclear. RNA sequencing on paired SNIP and normal tissues identified altered genes with enzyme annotations and metabolic pathways by intersecting our cohort data (GSE270193, N=2) with the GSE193016 (N=4) dataset using Ingenuity Pathway Analysis.

View Article and Find Full Text PDF

Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases.

View Article and Find Full Text PDF

Background: Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity.

View Article and Find Full Text PDF

The pan-cancer landscape of aldo-keto reductase1B10 reveals that its expression is diminished in gastric cancer.

Front Immunol

December 2024

Hunan Province Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.

Introduction: Aldo-keto reductase 1B10 (AKR1B10) is a multifunctional enzyme, which is important in cancer development and progression, but the landscape of AKR1B10 in pan-cancers and in tumor microenvironment is unclear.

Method: This study integrated the sequencing data of 33 cancer types, including gastric cancer, from TCGA project to explored the expression pattern and genetic and epigenetic alterations of AKR1B10. The association of AKR1B10 expression with clinical progression of cancers was evaluated by Kaplan-Meier analysis; the potential role of AKR1B10 in tumor microenvironment (TME) and immune-related gene expression were analyzed by PURITY, ESTIMATE, TIMER and CIBERSORT algorithms.

View Article and Find Full Text PDF

AKR1C3 mediates gastric cancer cell invasion and metastasis via the AKT and JNK/p-NF-κB signaling pathways.

Sci Rep

December 2024

Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.

Article Synopsis
  • * The study highlights the downregulation of AKR1C3 in GC tissues, which is associated with a more aggressive cancer phenotype and poorer patient prognosis.
  • * AKR1C3 shows potential as a tumor suppressor by inhibiting cell invasion and metastasis through interference with the p-JNK pathway, suggesting its value as a diagnostic and prognostic marker for gastric cancer treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!