Selenium (Se) deficiency induces testicular functional disturbances, but the molecular mechanism remains unclear. In the present study, 1-day-old broiler chickens were maintained for 55 days with a normal diet (0.2 mg/kg) and a Se-deficient diet (0.033 mg Se/kg). Then, the messenger RNA (mRNA) levels of selenoproteins, heat shock proteins (HSPs), and inflammatory factors were examined. Se deficiency led to decreased selenoproteins (Gpx1, Selk, and Selh) and HSPs (HSP40, HSP60, and HSP90) (P < 0.05). However, the expression levels of Gpx2, Sepn1, Seli, Selpb, Sepx1, HSP27, and inflammatory factors (iNOS, TNF-α, COX-2, and HO-1) were increased by Se deficiency (P < 0.05). Gpx1, Selk, and Selh showed positive correlation with HSP40, HSP60, and HSP90, but negative correlation with HSP27, HSP70, iNOS, TNF-α, COX-2, and HO-1. However, Gpx2, Spen1, Seli, Selpb, and Sepx1 showed positive correlation with inflammatory factors and HSP27 and HSP70. Selenoproteins showed different correlation with HSPs and inflammatory factors and were classified into different groups in response to Se deficiency. The results suggested that selenoproteins play different roles in chicken testes, and we think that Gpx1 and Selk may play a special role in chicken testes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-017-0953-yDOI Listing

Publication Analysis

Top Keywords

selenium deficiency
8
glutathione peroxidase
4
peroxidase selenoprotein
4
selenoprotein selenoprotein
4
selenoprotein play
4
play roles
4
roles chicken
4
chicken testes
4
testes response
4
response selenium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!