Accumulation of phenolic needle metabolites in Norway spruce is regulated by many genes with small and additive effects and is correlated with the susceptibility against fungal attack. Norway spruce accumulates high foliar concentrations of secondary phenolic metabolites, with important functions for pathogen defence responses. However, the molecular genetic basis underlying the quantitative variation of phenolic compounds and their role in enhanced resistance of spruce to infection by needle bladder rust are unknown. To address these questions, a set of 1035 genome-wide single nucleotide polymorphisms (SNPs) was associated to the quantitative variation of four simple phenylpropanoids, eight stilbenes, nine flavonoids, six related arithmetic parameters and the susceptibility to infection by Chrysomyxa rhododendri in an unstructured natural population of Norway spruce. Thirty-one significant genetic associations for the flavonoids gallocatechin, kaempferol 3-glucoside and quercetin 3-glucoside and the stilbenes resveratrol, piceatannol, astringin and isorhapontin were discovered, explaining 22-59% of phenotypic variation, and indicating a regulation of phenolic accumulation by many genes with small and additive effects. The phenolics profile differed between trees with high and low susceptibility to the fungus, underlining the importance of phenolic compounds in the defence mechanisms of Norway spruce to C. rhododendri. Results highlight the utility of association studies in non-model tree species and may enable marker-assisted selection of Norway spruce adapted to severe pathogen attack.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443855PMC
http://dx.doi.org/10.1007/s11103-017-0589-5DOI Listing

Publication Analysis

Top Keywords

norway spruce
24
phenolic needle
8
needle bladder
8
bladder rust
8
genes small
8
small additive
8
additive effects
8
quantitative variation
8
phenolic compounds
8
spruce
7

Similar Publications

In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species.

View Article and Find Full Text PDF

Priming of Norway spruce (Picea abies) inducible defenses is a promising way to protect young trees from herbivores and pathogens. Methyl jasmonate (MeJA) application is known to induce and potentially prime Norway spruce defenses but may also reduce plant growth. Therefore, we tested β-aminobutyric acid (BABA) as an alternative priming chemical to enhance spruce resistance, using 2-year-old Norway spruce plants.

View Article and Find Full Text PDF

Background: Westwood, 1833 consists of about 135 valid species worldwide. After the fundamental monograph of Graham (1969), 12 species have been described from continental Europe and three species have been described from the Canary Islands and Malta. Amongst them, one species, Askew, 1994, has been synonymised under (Mercet, 1923).

View Article and Find Full Text PDF

Introduction: Douglas-fir ( (Mirb.) Franco) is considered an important non-native substitute tree species in Europe, especially for Norway spruce ( (L.) Karst.

View Article and Find Full Text PDF

Norway spruce (Picea abies L.) is economically one of the most important conifer species in Europe. Spruce forests are threatened by outbreaks of the bark beetle Ips typographus L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!