Mechanical and shape memory properties of porous NiTi alloys manufactured by selective laser melting.

J Mech Behav Biomed Mater

Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo, 2801 W Bancroft St. MS 312 Toledo, OH 43606, USA. Electronic address:

Published: April 2017

Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2017.01.047DOI Listing

Publication Analysis

Top Keywords

shape memory
20
porous niti
16
memory properties
12
mechanical shape
8
niti alloys
8
selective laser
8
laser melting
8
good shape
8
niti
6
memory
5

Similar Publications

Background: Many complex traits and diseases show sex-specific biases in clinical presentation and prevalence. For instance, two-thirds of AD cases are female. Studies suggest that women might have higher cognitive reserve but steeper cognitive decline in older age.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Background: In this introductory talk, we embark on a journey of through the genomic frontiers of Alzheimer's research via the revolutionary Alzheimer's Disease Sequencing Project (ADSP).

Method: ADSP integrates together various components that collectively unravel the intricate genetic landscape of Alzheimer's disease with the ultimate goal of advancing precision medicine for the millions affected globally by this devastating disease. With a goal of sequencing and analyzing up to 150,000 complete genomes and associated clinical and functional data in the next five years, ADSP has amassed an unprecedented wealth of genomic data from diverse populations, providing a comprehensive and holistic understanding of the genetic underpinnings of Alzheimer's disease.

View Article and Find Full Text PDF

Background: Altered neuronal timing and synchrony are biomarkers for Alzheimer's disease (AD) and correlate with memory impairments. Electrical stimulation of the fornix, the main fibre bundle connecting the hippocampus to the septum, has emerged as a potential intervention to restore network synchrony and memory performance in human AD and mouse models. However, electrical stimulation is non-specific and may partially explain why fornix stimulation in AD patients has yielded mixed results.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

BITS Pilani Hyderabad Campus, Hyderabad, Telangana, India; RMIT, Melbourne, VIC, Australia.

Background: Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is categorized as a complicated disorder of extreme fatigue lasting for at least six months without any underlying medical problem and currently has no concrete treatment regimen. This is associated with neurological complications like brain fog, insomnia, psychiatric disturbances and above all neuroinflammation. A chronic forced swim test model of CFS has been established since more than a decade at our laboratory.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Columbia University, New York, NY, USA.

Background: While dysregulated local innate immunity and microglial dysfunction are thought to play a pathogenic role in Alzheimer's disease (AD), the underlying mechanisms remain unclear. Importantly, activation of immune and metabolic pathways in myeloid cells can lead to a functional reprogramming process, termed innate immune memory (IIM), in which the response to an initial stimulus shapes long-lasting epigenetic modifications that alter the response to future inflammatory stimuli. This epigenetic imprinting process has been minimally studied in microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!