The use of mobile phones while driving remains a major human factors issue in the transport system. A significant safety concern is that driving while distracted by a mobile phone potentially modifies the driving speed leading to conflicts with other road users and consequently increases crash risk. However, the lack of systematic knowledge of the mechanisms involved in speed adaptation of distracted drivers constrains the explanation and modelling of the extent of this phenomenon. The objective of this study was to investigate speed adaptation of distracted drivers under varying road infrastructure and traffic complexity conditions. The CARRS-Q Advanced Driving Simulator was used to test participants on a simulated road with different traffic conditions, such as free flow traffic along straight roads, driving in urbanized areas, and driving in heavy traffic along suburban roads. Thirty-two licensed young drivers drove the simulator under three phone conditions: baseline (no phone conversation), hands-free and handheld phone conversations. To understand the relationships between distraction, road infrastructure and traffic complexity, speed adaptation calculated as the deviation of driving speed from the posted speed limit was modelled using a decision tree. The identified groups of road infrastructure and traffic characteristics from the decision tree were then modelled with a Generalized Linear Mixed Model (GLMM) with repeated measures to develop inferences about speed adaptation behaviour of distracted drivers. The GLMM also included driver characteristics and secondary task demands as predictors of speed adaptation. Results indicated that complex road environments like urbanization, car-following situations along suburban roads, and curved road alignment significantly influenced speed adaptation behaviour. Distracted drivers selected a lower speed while driving along a curved road or during car-following situations, but speed adaptation was negligible in the presence of high visual cutter, indicating the prioritization of the driving task over the secondary task. Additionally, drivers who scored high on self-reported safe attitudes towards mobile phone usage, and who reported prior involvement in a road traffic crash, selected a lower driving speed in the distracted condition than in the baseline. The results aid in understanding how driving task demands influence speed adaptation of distracted drivers under various road infrastructure and traffic complexity conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2017.01.018 | DOI Listing |
Biomed Opt Express
January 2025
Department of Robotics, University of Michigan, USA.
Conventional scanned optical coherence tomography (OCT) suffers from the frame rate/resolution tradeoff, whereby increasing image resolution leads to decreases in the maximum achievable frame rate. To overcome this limitation, we propose two variants of machine learning (ML)-based adaptive scanning approaches: one using a ConvLSTM-based sequential prediction model and another leveraging a temporal attention unit (TAU)-based parallel prediction model for scene dynamics prediction. These models are integrated with a kinodynamic path planner based on the clustered traveling salesperson problem to create two versions of ML-based adaptive scanning pipelines.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, Stanford University, Stanford, California, USA.
Purpose: To provide a fast quantitative imaging approach for a 0.55T scanner, where signal-to-noise ratio is limited by the field strength and k-space sampling speed is limited by a lower specification gradient system.
Methods: We adapted the three-dimensional spiral projection imaging MR fingerprinting approach to 0.
This Letter reports what we believe to be a novel schlieren approach with adaptive temporal resolution. The fundamental concept of this approach is to fuse an event-based camera and a low-speed frame-based camera to generate high-frame-rate videos by leveraging the strengths of both. Using a novel experimental setup, events and frames are accurately aligned in both space and time.
View Article and Find Full Text PDFJ Anat
January 2025
Center for Development Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.
Geometric morphometrics is used in the biological sciences to quantify morphological traits. However, the need for manual landmark placement hampers scalability, which is both time-consuming, labor-intensive, and open to human error. The selected landmarks embody a specific hypothesis regarding the critical geometry relevant to the biological question.
View Article and Find Full Text PDFCurr Biol
January 2025
Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway.
Understanding the movements of highly mobile animals is challenging because of the many factors they must consider in their decision-making. Many seabirds, for example, are adapted to use winds to travel long distances at low energetic cost but also potentially benefit from targeting specific foraging hotspots. To investigate how an animal makes foraging decisions, given the inevitable trade-off between these factors, we tracked over 600 foraging trips of breeding Manx shearwaters (Puffinus puffinus; N = 218 individuals) using GPS accelerometers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!