Folate nutrition and blood-brain barrier dysfunction.

Curr Opin Biotechnol

Cornell University, Division of Nutritional Sciences, Ithaca, NY 14853, United States.

Published: April 2017

Mammals require essential nutrients from dietary sources to support normal metabolic, physiological and neuronal functions, to prevent diseases of nutritional deficiency as well as to prevent chronic disease. Disease and/or its treatment can modify fundamental biological processes including cellular nutrient accretion, stability and function in cells. These effects can be isolated to a specific diseased organ in the absence of whole-body alterations in nutrient status or biochemistry. Loss of blood-brain barrier function, which occurs in in-born errors of metabolism and in chronic disease, can cause brain-specific folate deficiency and contribute to disease co-morbidity. The role of brain folate deficiency in neuropsychiatric disorders is reviewed, as well as emerging diagnostic and nutritional strategies to identify and address brain folate deficiency in blood-brain barrier dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385290PMC
http://dx.doi.org/10.1016/j.copbio.2017.01.006DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
12
folate deficiency
12
barrier dysfunction
8
chronic disease
8
brain folate
8
folate
4
folate nutrition
4
nutrition blood-brain
4
dysfunction mammals
4
mammals require
4

Similar Publications

Mechanisms of cognitive impairment associated with cerebral infarction.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Cerebral infarction is a common type of stroke with high incidence and disability rates, and most patients experience varying degrees of cognitive impairment. The manifestations and severity of post-infarction cognitive impairment are influenced by multiple interacting factors, and its pathophysiological mechanisms are highly complex, involving pericyte degeneration, excessive generation of reactive oxygen species (ROS), overproduction of glutamate, and overactivation of autophagy. After cerebral infarction, abnormal pericyte function activates neuroinflammation and facilitates the entry of inflammatory mediators into the brain; detachment of pericytes from blood vessels disrupts the integrity of the blood-brain barrier.

View Article and Find Full Text PDF

1-Octen-3-ol exacerbates depression-induced neurotoxicity via the TLR4/NF-κB and Nrf2/HO-1 pathways.

Neurotoxicology

March 2025

Collaborative Innovation Center for Modern Grain Circulation and Safety, and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China. Electronic address:

1-Octen-3-ol is a volatile compound widely found in various fungi and plants, and studies have suggested its potential role in the development of neurodegenerative diseases. However, the mechanism by which 1-octen-3-ol induces neural injury in rats remains unclear. In this study, we used aerosolized 1-octen-3-ol to treat depressive model rats to investigate its effects on neural injury behaviors and neurophysiology in SD rats.

View Article and Find Full Text PDF

Chronic pain is a significant public health concern that diminishes patients' quality of life and imposes considerable socioeconomic costs. Effective pharmacological treatments for ongoing pain are limited. Recent studies have indicated that various models of chronic pain-such as neuropathic pain, inflammatory pain, and pain associated with cancer-have abnormal levels of long noncoding RNAs (lncRNAs).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Guanxin II, proposed by Chen Keji (National master of traditional Chinese medicine), possesses cerebral-protective effect. Interestingly, its simplified prescription Danshen-Chuanxiong-Honghua (DCH) can also clinically ameliorate cerebral impairment and improve spatial cognitive deficits, similar to original formula's function.

Aim Of The Study: We aimed to elucidate the rationality of DCH's natural existence, qualitatively identify DCH-derived phytochemicals, thereby validate cerebral protective effect, and expose potential mechanism of DCH and its main absorbed compound ferulic acid (FA).

View Article and Find Full Text PDF

Studies based on extracellular vesicles (EVs) have been multiplying exponentially for almost two decades, since they were first identified as vectors of cell-cell communication. However, several of these studies display a lack of rigor in EVs characterization and isolation, without discriminating between the different EV populations, thus generating conflicting and unreproducible results. There is therefore a strong need for standardization and guidelines to conduct studies that are rigorous, transparent, reproducible and comply with certain nomenclatures concerning the type of EVs used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!