Recently, Zika virus (ZIKV) has been recognized as a significant threat to global public health. The disease was present in large parts of the Americas, the Caribbean, and also the western Pacific area with southern Asia during 2015 and 2016. However, little is known about the factors affecting the transmission of ZIKV. We used Gradient Boosted Regression Tree models to investigate the effects of various potential explanatory variables on the spread of ZIKV, and used current with historical information from a range of sources to assess the risks of future ZIKV outbreaks. Our results indicated that the probability of ZIKV outbreaks increases with vapor pressure, the occurrence of Dengue virus, and population density but decreases as health expenditure, GDP, and numbers of travelers. The predictive results revealed the potential risk countries of ZIKV infection in the Asia-Pacific regions between October 2016 and January 2017. We believe that the high-risk conditions would continue in South Asia and Australia over this period. By integrating information on eco-environmental, social-economical, and ZIKV-related niche factors, this study estimated the probability for locally acquired mosquito-borne ZIKV infections in the Asia-Pacific region and improves the ability to forecast, and possibly even prevent, future outbreaks of ZIKV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinf.2017.01.015 | DOI Listing |
Rev Med Virol
January 2025
Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China.
Arboviruses currently are regarded as a major worldwide public health concern. The clinical outcomes associated with this group of viruses may vary from asymptomatic infections to severe forms of haemorrhagic fever characterised by bleeding disorders. Similar to other systemic viral infections, arboviruses can either directly or indirectly affect different parts of the body, such as the urogenital system.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA.
Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2).
View Article and Find Full Text PDFUnlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.
View Article and Find Full Text PDFIntroduction: The severity of virally induced prenatal brain injury, even among dizygotic twins, varies according to individual and maternal risk and protective factors, including genomics.
Objective: This scoping review aims to analyze data on genetic susceptibility to neurological outcomes in children exposed in utero to Zika virus.
Methods: We followed JBI methodology for this scoping review.
BMC Infect Dis
January 2025
Faculty of Medicine, Center for Zoonotic and Emerging Diseases HUMRC, Universitas Hasanuddin, Makassar, Indonesia.
Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.
Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!