Postmortem studies on mitochondria in schizophrenia.

Schizophr Res

Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States. Electronic address:

Published: September 2017

The aim of this paper is to provide a brief review of mitochondrial structure as it relates to function and then present abnormalities in mitochondria in postmortem schizophrenia with a focus on ultrastructure. Function, morphology, fusion, fission, motility, ΔΨmem, ATP production, mitochondrial derived vesicles, and mitochondria-associated ER membranes will be briefly covered. Pathology in mitochondria has long been implicated in schizophrenia, as shown by genetic, proteomic, enzymatic and anatomical abnormalities. The cortex and basal ganglia will be reviewed. In the anterior cingulate cortex, the number of mitochondria per neuronal somata in layers 5/6 in schizophrenia is decreased by 43%. There are also fewer mitochondria in terminals forming axospinous synapses. In the caudate and putamen the number of mitochondria is abnormal in both glial cells and neurons in schizophrenia subjects, the extent of which depends on treatment, response and predominant lifetime symptoms. Treatment-responsive schizophrenia subjects had about a 40% decrease in the number of mitochondria per synapse in the caudate nucleus and putamen, while treatment resistant cases had normal values. A decrease in mitochondrial density in the neuropil distinguishes paranoid from undifferentiated schizophrenia. The appearance, size and density of mitochondria were normal in the nucleus accumbens. In the substantia nigra, COX subunits were affected in rostral regions. Mitochondrial hyperplasia occurs within axon terminals that synapse onto dopamine neurons, but mitochondria in dopamine neuronal somata are similar in size and number. In schizophrenia, mitochondria are differentially affected depending on the brain region, cell type, subcellular location, treatment status, treatment response and symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550365PMC
http://dx.doi.org/10.1016/j.schres.2017.01.056DOI Listing

Publication Analysis

Top Keywords

number mitochondria
12
mitochondria
10
schizophrenia
8
neuronal somata
8
schizophrenia subjects
8
treatment response
8
postmortem studies
4
studies mitochondria
4
mitochondria schizophrenia
4
schizophrenia aim
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Fluctuations in circulating cell-free mitochondrial and nuclear DNA copy numbers in blood plasma after anti-tuberculosis drug intake in patients with drug-susceptible tuberculosis.

Tuberculosis (Edinb)

January 2025

Latvian Biomedical Research and Study Centre, Ratsupites street 1, k-1, Riga, LV-1067, Latvia; Riga Stradiņš University, Pharmacogenetic and Precision Medicine Laboratory, Konsula street 21, Riga, LV-1007, Latvia. Electronic address:

Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations. The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point.

View Article and Find Full Text PDF

Biphasic in vitro oocyte maturation (IVM) can be offered as a patient-friendly alternative to conventional ovarian stimulation in in vitro fertilization (IVF) patients predicted to be hyper-responsive to ovarian stimulation. However, cumulative live birth rates after IVM per cycle are lower than after conventional ovarian stimulation for IVF. In different animal species, supplementation of IVM media with oocyte-secreted factors (OSFs) improves oocyte developmental competence through the expression of pro-ovulatory genes in cumulus cells.

View Article and Find Full Text PDF

The role of celastrol in inflammation and diseases.

Inflamm Res

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.

Celastrol is one of the main active ingredients extracted from the plant Tripterygium wilfordii Hook F. A growing number of studies have shown that celastrol has various pharmacological effects, including anti-inflammation, anti-rheumatism, treatment of neurodegenerative diseases, and anti-tumor. This article systematically summarized the mechanism and role of celastrol in lipid metabolism and obesity, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis, inflammatory bowel disease, neurodegenerative diseases, and cancer and other diseases (such as diabetes, respiratory-related diseases, atherosclerosis, psoriasis, hearing loss, etc.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!